ЕЛЕКТРОННО-ИОННЫЕ ПРОЦЕССЫ В НАНОПОРИСТОМ УГЛЕРОДЕ, СТИМУЛИРОВАННЫЕ ЛАЗЕРНЫМ ОБЛУЧЕНИЕМ

Будзуляк И.М., Беркещук М.В

Прикарпатский Национальный Университет им. В. Стефаника

Введение

Нанопористый углерод (НУ), используемый для создания конденсаторов сверхбольшой емкости (суперконденсаторов), работающих по принципу заряда/разряда двойного электрического слоя, должен обладать определенными параметрами (оптимальное распределение пор по размерам, удельная проводимость, плотность и т.п.), которые далеко не всегда обеспечиваются соответствующей технологией его получения. Поэтому во многих случаях осуществляют дополнительную обработку нанопористого углерода для целенаправленного изменения указанных параметров [1-2].

Результаты и обсуждение

НУ представляет собой неравновесную систему, поэтому действием внешних факторов можно легко менять ее состояние. Одним из таких факторов является импульсное лазерное воздействие, которым можно эффективно влиять на параметры таких систем и целенаправленно управлять ими.

Нами исследовались характеристики суперконденсаторов, сформированных на основе НУ, который последовательно модифицировался термической доактивацией и лазерной обработкой.

На рис. 1 представлены зависимости удельной емкости таких конденсаторов от времени и температуры доактивации НУ, на базе которого они формируются. Как видно из рис. 1, термическая доактивация позволяет увеличить их удельную емкость более чем в два раза. Приведенные зависимости указывают на то, что эффект увеличения удельной емкости имеет место для НУ, получаемого как с естественного, так и с синтетического сырья (формальдегидные смолы), что свидетельствует об универсальности предлагаемой методики.

Однако термическая доактивация НУ, увеличивая удельную емкость соответствующих конденсаторов, не приводит к уменьшению их внутреннего сопротивления. Поэтому нами использовалась методика внедрения в матрицу НУ металлов с высокой электронной плотностью (Er, Cr), которые приводят как к повышению удельной емкости, так и к снижению внутреннего сопротивления [3-4].

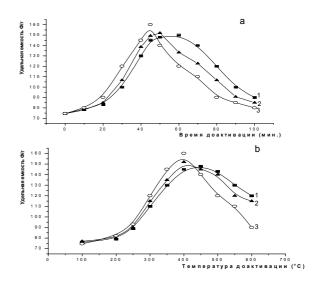


Рис. 1. Зависимость удельной емкости суперконденсаторов на основе термически доактивированного НУ от времени (а) и температуры (b) доактивации:

1-НУ, полученный из абрикосовых косточек.

2-НУ, полученный из вишневых косточек

3-НУ, полученный из фенолформальдегидных смол

Между тем вследствие многократного заряда/разряда кулоновская эффективность суперконденсаторов на основе инжектованого металлами НУ уменьшается для достаточно большого количества циклов (рис. 2 кривая 1). Облучение НУ, инжектированого Ег импульсами лазера, который работал в режиме свобод-

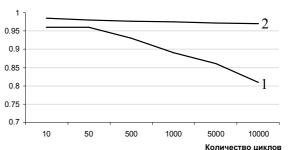


Рис. 2. Зависимость кулоновской эффективности от количества циклов:

1— суперконденсатор на основе НУ с добавкой 0.3% Er

2– суперконденсатор на основе НУ с добавкой 0,3% Er и облученного импульсами лазера τ_{u} =2мс, E=44Дж/см²

ной генерации (λ = 1,06 мкм, τ = 2 мс, $E = 40-50 \, \text{Дж/см}^2$), практически не изменяет удельной емкости и внутреннего сопротивления соответствующих суперконденсаторов, но существенно влияет на их кулоновскую эффективность (рис. 2, кривая 2). Как видно из рис. 2, для облученных образцов кулоновская эффективность остается практически неизменной на протяжении 10⁵ циклов, в то время как для необлученных она неуклонно уменьшается. Наиболее вероятно, в результате лазерной обработки инжектированные атомы Ег диффундируют вглубь материала и таким образом при многоразовой перезарядке указанные атомы не переходят в электролит. Аналогические результаты были получены при использовании лазера, который работал в режиме модулированной добротности (τ =15 нс, E=0,02 Дж, λ =1,06 мкм, время облучения 3 мин.). Однако в этом случае значительного времени облучения возможно окисления структуры нанопористый углерод-инжектированный металл. Полученные свидетельствуют стабилирезультаты зирующей роли лазерного облучения, которая уменьшению существенному приводит К фарадеевских процессов В системе електролит.

Исследовались также свойства суперконденсаторов, сформированных на основе НУ инжектированного При хромом. малом количестве Ст облучение лазером приводит к увеличению незначительному **у**дельной емкости. С повышением количества внедренного в матрицу (более 0.1 вес%), как видно из рис. 3 имеет место немонотонная зависимость удельной емкости от величины вес.% Ст, в то время как для необлученных образцов такая зависимость имеет только один максимум. Вероятно, атомы Ст в структуре НУ могут находится в нескольких энергетических

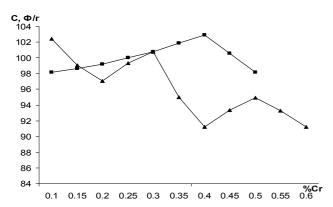


Рис. 3. Зависимость удельной емкости суперконденсаторов от количества внедренного Cr: 1–HУ. 2–HУ, облученный импульсами Nd-лазера ($\tau_{\rm u}$ =15нс, E=0,03Дж/см², t=3мин.)

и зарядовых состояниях, что приводит к тому, что при постоянной дозе лазерного облучения происходят наблюдаемые изменения удельной емкости.

Стабилизирующую роль лазера подтверждают потенциодинамические кривые, снятие на конденсаторах, сформированных на основе НУ облученного лазером. Как видно с рис. 4, потенциодинамическая кривая для лазернооблученного НУ близка к кривой для идеального конденсатора, в то время как для необлученного образца наблюдается рост тока при стремлении U к 1B, что свидетельствует об наличии фарадеевских процессов при заряде/розряде суперконденсаторов.

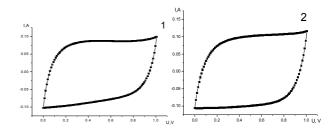


Рис. 4. Потенциодинамические кривые, получение для суперконденсаторов, сформированных на необлученном НУ (1) и лазернооблученном НУ (2)

Выводы

Совместная термическая и лазерная модификация НУ может существенно улучшить характеристики суперконденсаторов, сформированных на его основе.

Литература

- 1. Будзуляк И.М., Ковалюк З.Д., Кожушко О.В. Экологически безопасная технология получения активированого углерода для конденсаторов с двойным электрическим слоем. Вест.Львов. У-та, сер.хим. вып. 42(2), 2002.
- 2. Григорчак И.И. Молекулярные накопители энергии: основоположные принципы и новейшие направления технологий. Вест.Прик. У-та. Математика. Физика. Ив.-Франковск, Вып. 1, 2000.
- 3. Будзуляк И.М., Ковалюк З.Д., Орлецкий В.Б. Исследование влияния инжекции калия на свойства углерода. Вест. Черновицкого у-та. Физика. Електроника. 2001.вып.102. С.76-77.
- 4. Лисовский Р.П., Будзуляк И.М., Григорчак И.И., Мерена Р.И. Миронюк И.Ф. Остафийчук Б.К. Свойства суперконденсаторов на основе активированного углерода, инжектированного хромом Физика и химия твердого тела 2004;5(4):833-835.