КОМПОЗИЦИОННЫЕ ПОКРЫТИЯ, СОДЕРЖАЩИЕ Со, С₆₀, В, УЛЬТРАДИСПЕРСНЫЕ АЛМАЗЫ (УДА)

Кудин В.Г., Макара В.А., Судавцова В.С.

Киевский национальный университет имени Тараса Шевченко, ул. Владимирская 60, Киев, 01033 Украина *E-mail: vsudavtsova@univ.kiev.ua*

Введение

настоящее время особый В интерес представляют покрытия, содержащие частицыкластеры, размеры которых составляют лишь несколько единиц или сотен нанометров. размеры которых Введение кластеров, соизмеримы с величиной зародышей металла, оказывают влияние на процесс формирования и роста кристаллитов, текстуру осадков. количество включенных Известно, что субмикронных частиц УДА в металлическую матрицу очень мало (≤ 1 масс. %). Но даже эти незначительные добавки приволят улучшению физико-механических свойств покрытий. В связи с этим цель данной работы – изучить влияние С60 и УДА на процесс гальванического осаждения кобальта и сплавов кобальт-бор; свойства полученных покрытий; влияния термообработки функциональные характеристики композицонных гальванических покрытий (КГП).

Результаты и обсуждение

КГП осаждали на стальные образцы из раствора, содержащего (моль/л): сульфат кобальта -0.7; хлорид кобальта -0.1; борная кислота – 0,6; сульфат натрия – 0,2; тетрагидроборат натрия – 0,005-0,01. NaBH₄ растворяли в 5 мл 1н гидроксида натрия (для предотвращения гидролиза). Электролиз раствора проводили при рН≈3-5 и 290-292 К. электролита регулировали введением или гидроксида натрия. кислоты Мелкодисперсные частицы С₆₀ растворяли в толуоле и доливали в электролит. Частицы УДА вводили в электролит в количестве 0-10 г/л. Их размеры 3-6 нм, а удельная поверхность $200-350 \text{ м}^2/\Gamma$. Количество бора в покрытии определяли потенциометрическим титрованием, а УДА - сжиганием КГП в токе кислорода с последующим кулонометрическим титрованием CO_2 . Фазовый состав концентрацию С₆₀ определяли дифракционным методом на ДРОН-3 с Fe-К_а-излучением. Расчет параметров кристаллической решетки, размеров области когерентного рассеяния (ОКР) выполняли для кристаллографического направления Со (111) с использованием

аппроксимирующей функции Коше. Распределение элементов по глубине КГП проводили с помощью Оже-спектрометра Rabin при заданной скорости ионного травления, определенной по эталонным образцам.

Установлено, что введение С60 и УДА практически не оказывает влияния на скорость осаждения кобальта (20 мкм/ч), позволяет увеличить предельную плотность тока от 2 А/дм² (при отсутствии дисперсной фазы) до 4 A/дм^2 (в ее присутствии). Это можно объяснить высокой степенью дисперсности С60 и УДА, а также их строением. Известно, что частицы УДА отрицательно заряжены, а ζ-потенциал водной суспензии УДА равен -5 мВ. Это обусловлено тем, что поверхность частиц наноалмаза содержит кислородсодержащие функциональные группы, способные взаимодействовать с выделяющимся на катоде водородом. Из-за малого размера частиц С₆₀ и УДА, соизмеримого с толщиной двойного электрического слоя, они способны попадать в зону его влияния и перемешивать электролит в прикатодном слое, тем самым препятствуя увеличению рН электролита. Поэтому десорбция водорода на освободившейся увеличивается, на активированной поверхности разряжаются ионы кобальта (II). Этим можно объяснить уменьшение степени наводораживания КГП изученных И снижением уровня внутренних напряжений в них.

рентгенофазового Методом анализа установили, что частицы УДА, включенные в кобальтовое покрытие, представляют собой кристаллический алмаз c небольшими примесями углерода. Причем, увеличение содержанием УДА в электролите до 5 г/л прямо пропорциональному приводит К увеличению его количества в покрытии. Дальнейшее увеличение концентрации УДА (до 10 г/л) обусловливает уменьшение скорости их включения. При содержании 20 г/л достигается его максимальное значение 1масс. %.

Наибольшее влияние на содержание УДА и C_{60} в кобальтовом покрытии оказывает увеличение плотности катодного тока $i_{\text{кат.}}$. Так, увеличение $i_{\text{кат.}}$ с 0,5 до 3 $A/\text{дм}^2$ обусловливает

увеличение концентрации УДА и С60 до 1 и 0,5 масс. %. Введение же NaBH₄ в водную суспензию, также увеличение a концентрации с 0,1 до 2 г/л приводит к возрастанию содержания УДА и С60 до 0,4 и 0,3 масс. %, соответственно. Концентрация бора также возрастает до 4 масс. %. При введении в водную суспензию изменяется ζ-потенциал частиц УДА (от −5 до −10 мВ) и C_{60} (от -8 до -20 мВ). Это, вероятнее всего, взаимодействием обусловлено частицами и ВН₄, что влияет на процесс формирования КГП.

Подтверждением этого есть то, что любое перемешивание суспензии приводит к ухудшению качества покрытий. Показано, что качественные покрытия получаются при легком периодическом взмучивании электролитасуспензии. Это обусловлено тем, что очень мелкие частицы остаются в объеме, а крупные агролераты — на дне.

данных рентгеновского показано, что при включении наноалмаза или С₆₀ в малых концентрациях (до 0,3 %) параметр кристаллической решетки не изменяется При дальнейшем vвеличении (табл.). содержания частиц в КГП параметр решетки незначительно возрастает. По-видимому, включение наиболее активных наноалмаза или С₆₀ происходит на поверхности растущих кристаллов Со на межзеренных границах. Наоборот, при внедрении бора в покрытие до 2,8 % уменьшается параметр кристаллической решетки и размер зерен. Эти покрытия представляют собой твердый раствор бора в кобальте с достаточно сформированной кристаллической структурой, о чем свидетельствуют острые дифракционные соответствующие плоскостям отражения Со (200),Осадки (111),(220),(311).концентрацией бора более 2.8 рентгеноаморфны. Самый интенсивный рефлекс Со(111) исчезает И появляется широкое гало в области углов 20, равных $45-60^{\circ}$. Вероятнее всего, включение бора происходит при адсорбции NaBH₄ с его последующим распадом до элементарного бора. Внедрение частиц УДА до 0,5 % в покрытие Со-В приводит к уменьшению размера зерна до 7 нм и параметра кристаллической решетки до a=3,5069 Å. Это может быть обусловлено взаимодействием между бором и УДА, внедренным в решетку Со. При концентрации УДА 0,5 % и бора более 3,5 % КГП получаются рентгеноаморфными.

Таблица. Фазовый состав, периоды решетки и размеры зерен

1 1	<u> </u>			
УДА,	Конц.	Фазовый	ОКР,	a, Å
масс.%	бора,	состав	HM	
	масс.%			
0	0	крист. Со	24	3,5122
0,3-0,8	0	крист. Со	24	3,5122
1,0	0	крист. Со	29	3,5122
0	1,5	Твердый р-р	17	3,5105
		ВвСо		
0	2,9	рентгено-	10	3,5101
		аморфный		
0,4	0,7	Твердый р-р	18	3,5080
		ВвСо		
0,5	2,3	Твердый р-р	7,2	3,5010
		ВвСо		
0,6	3,2	рентгено-	-	-
		аморфный		

Измерения микротвердости Н₁₀ покрытия увеличение показали, что содержания наноалмаза приводит к ее возрастанию. Микротвердость КГП кобальт-алмаз на 35 % микротвердость превышает кобальтовых покрытий. Дальнейшее увеличение микротвердости с введением ультрадисперсных частиц бора, возможно, связано с внедрением твердых частиц в матрицу кобальта, а также с ее дисперсионным твердением, которое наблюдается в присутствии субмикронных частиц, препятствующих рекристаллизации и образованию грубых зерен. Согласно рентгенофазовому анализу, его атомы внедряются в решетку кобальта и уменьшают его зерно. Микротвердость Со-УДА-покрытий на 30 % превышает таковую для кобальтовых. Этот эффект связан с внедрением твердых наночастиц в Со-матрицу и ее дисперсионным затвердеванием. Для покрытий с бором Н₁₀ возрастает в 2-3 раза по сравнению с кобальтовыми. Согласно РФА, внедрение атомов бора в решетку Со приводит к уменьшению зерна. Внедрение Со-покрытие практически не влияет на его H_{10} , но существенно увеличивает их коррозионную стойкость к растворам 20 % гидроокиси натрия и серной кислоты.

Мы также проводили термообработку изученных покрытий при 350° С в течение 1-2 часов в атмосфере аргона или в вакууме. Микротвердость таких покрытий возрастает на 20 %, что обусловлено распадом твердого раствора кобальта с образованием Co_3B и упорядочением строения этих покрытий.

Выводы

Определены оптимальные условия получения КГП на основе Со. Установлено, что микротвердость изученных покрытий возрастает в ряду: $Co-C_{60}\sim Co-УДА\rightarrow Co-B\rightarrow Co-B-VДA$.