МЕТОДЫ МОДИФИКАЦИИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ УГЛЕРОДНЫМИ НАНОСТРУКТУРАМИ

<u>Давыдов И.А.</u>, Жогова К.Б.*, Пискунов В.Н., Троицкий Б.Б.⁽¹⁾

Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, ул. Мира 37, Саров, 607188 Россия

(1) Институт металлоорганической химии им. Г.А.Разуваева РАН, ул. Тропинина 49, Нижний Новгород, 603950 Россия

Введение

Одним из перспективных направлений получения материалов с заданными свойствами является разработка полимерных материалов, модифицированных углеродными наноструктурами (фуллеренами, нанотрубками, нановолокнами). При этом могут существенно изменяться прочность, термостабильность, газопроницаемость, электропроводность и другие важные эксплуатационные свойства полимеров [1-3].

Результаты и обсуждение

Включение фуллеренов в состав полимеров принципиально возможно двумя способами: ИЛИ комплексно связанными. Внедренный полимерную матрицу ковалентно фуллерен реструктурирует ее, что при формировании используется новых многофункциональных полимерных наноструктур. Нековалентное связывание фуллерена с полимерным веществом образованию комплексов с приводить К модифицированными свойствами. Углеродные нанотрубки в состав полимера вводятся путем смешения и равномерного диспергирования на микронном уровне.

Такие способы введения позволяют классифицировать фуллерены С₆₀, С₇₀ и другие молекулярные наноструктуры как лизаторы И ингибиторы, T.e. вещества, регулирующие протекание химических процессов в полимере. Углеродные нанотрубки и нановолокна - как наполнители; т.е. как вещества в первую очередь влияющие на термодеформационные и другие механические характеристики полимеров.

Нами исследовано влияние добавки фуллерена C_{60} на термические, радиационные, оптические и механические свойства полимеров на основе полиметилметакрилата, полистирола, полиэтилена. Методика синтеза исследованных композитов заключалась в смешивании в определенных пропорциях раствора фуллерена в органических растворителях и полимера, что приводило к

нековалентному связыванию фуллерена с полимером (на оптических спектрах видны характерные для фуллерена C_{60} полосы поглощения в УФ-и видимом диапазоне).

В результате исследований показано, что фуллерены являются ингибиторами цепных радикальных реакций термической термоокислительной деструкции полимеров. Фуллерены замедляют термораспад полиметилметакрилата вплоть до температуры 340°C, полистирола - до 380°C, полиэтилена - до 360°C. Механизм ингибирующего фуллеренов заключается во взаимодействии свободных макрорадикалов с фуллеренами с образованием термически устойчивых соединений. Сравнение фуллеренов с известными органическими антиоксидантами (аминами, фенолами, фосфор и серусодерсоединениями), жащими которые ингибировать термоокислительную деструкполимеров 270-290°C, только до показывает, что фуллерены имеют явное преимущество при температурах деструкции полимеров больших 300°C.

Исследование облученных электронами полимеров (дозы облучения 5,10 и 30 Мрад, до 9 Мэв) энергия OT 8 методами дифференциально-термического, термогравиметрического, рентгенофазового анализов, оптической спектрометрии и испытания на растяжение показало, что добавка фуллерена С₆₀ в указанные композиции увеличивает температуру начала деструкции ПММА. облученного электронами, на 20-55°C; снижает термоокислительной скорость деструкции в 4-4.5 раза для ПММА и в 1.4-2.0 для ПС; приводит увеличению прочностных К характеристик ПММА сополимеров; изменяет пропускание пленок в УФ и видимом диапазонах и не изменяет в ближней ИКобласти; приводит стабилизации К молекулярной ПММА, ПС массы сополимеров; не вносит заметных изменений в фазовый состав пленок.

Полученные результаты указывают на увеличение стабильности полимеров при

добавлении фуллерена C_{60} , что может способствовать улучшению эксплуатационных характеристик материалов на их основе, увеличению срока их службы.

Выводы

Результаты исследований свойств композитов указывают на увеличение термической и радиационной стойкости, механических характеристик модифицированных полимеров.

Литература

- 1. Е.В. Ануфриева, М.Г.Краковяк, Т.Д.Ананьева и др. Взаимодействие полимеров с фуллереном С₆₀. ФТТ 2002; 44(3):443.
- 2. С.В.Гладченко, Г.А.Полоцкая, А.В.Грибанов, В.Н.Згонник. Исследование твердофазной композиции полистирол-фуллерен. ЖТФ 2002; 72(1):105.
- 3. Б.Б. Троицкий, Г.А. Домрачев, И.А. Давыдов, К.Б. Жогова. Исследование влияния фуллерена C_{60} на стабилизацию полиметилметакрилата при воздействии ионизирующего излучения. Доклады РАН 2002; 363(4):510-511.