ФИЗИЧЕСКАЯ МОДЕЛЬ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА ПОЛУМЕТАЛЛИЧЕСКИХ УГЛЕРОДНЫХ НАНОТРУБКАХ

Мавринский А.В.¹, Байтингер Е.М.²

¹Челябинский государственный педагогический университет, Россия ²Preußisches Privatinstitut für Technologie zu Berlin, Am Schloßpark 30, 13187 Berlin

Введение

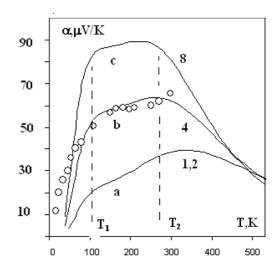
Работа посвящена теоретическому изучению коэффициента тэдс углеродных нанотрубок. Представлены расчетные значения температурной зависимости коэффициента термоэдс полуметаллических углеродных нанотрубок, которые удовлетворительно согласуются с экспериментальными результататми. Предложена простая физическая модель преобразователя термоэлектрического полуметаллических углеродных нанотрубках.

Температурная зависимость коэффициента термоэдс

Использована простая модель графитового слоя с линейной зависимостью плотности состояний от энергии

$$N(E)=B\cdot|E|$$
, B=const. (1)

Учет цилиндричности углеродной системы нанотрубок приводит к появлению резонансных уровней в спектре π -электронов при энергиях $|\mathbf{\epsilon}_{\mathbf{n}}|$ (n-целое число) [1]. Установлено, что энергия $|\mathbf{\epsilon}_{\mathbf{n}}|$ зависит от диаметра нанотрубки. Размытие резонансных уровней $|\mathbf{\epsilon}_{\mathbf{n}}|$ в данном исследовании аппроксимировано гауссовой функцией:


$$\delta N(E) = \frac{C}{\Gamma} \exp\left(-\frac{4\ln(2) \cdot (E - E_n)^2}{\Gamma^2}\right)$$
 (2)

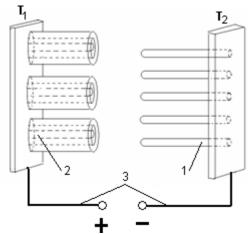
с полушириной Γ , зависящей от степени совершенства (или количества дефектов) нанотрубки. В формуле (2) нормировочная величина Γ определяется концентрацией свободных π -электронов (дырок).

С учетом (2) полная плотность состояний в π -подзонах вблизи уровня Ферми :

$$N(E) = B \cdot |E| + \delta N(E)$$
 (3)

В рамках описанной выше модели в случае двух типов носителей заряда в нанотрубках и учетом резонансных состояний вычислен коэффициент термоэдс а нанотрубок и его температурная зависимость с помощью уравнения Больцмана.

Рис.1. Расчетная температурная зависимость коэффициента термоэдс углеродных нанотрубок. Цифры у кривых a, b, c означают концентрацию С свободных зарядов в единицах: $10^{19}~\rm sm^{-3}$. Вертикальные пунктирные линии выделяют температурный интервал T_2 - T_1 , в котором α максимален. Кружками (\bigcirc) показаны экспериментальные результаты из [2].


Ha рис.1 представлены расчетные зависимости коэффициента температурные термоэдс а . Цифры у кривых означают концентрацию С единицах: $10^{19} \, \text{sm}^{-3}$. Уровень Ферми помещен в валентную зону на глубину $|\varepsilon_F|=0.07$ eV, а резонанстный уровень первый (n=0) c полушириной Г= 0,01 eV локализован при $|\mathbf{\varepsilon}_{\mathbf{n}}|_{\mathbf{n}=\mathbf{0}} = 0,1 \text{ eV}.$ Данный набор энергии параметров осуществлен с целью получения максимального коэффициента α. В докладе обсуждаются причины сдвига уровня Ферми в ту или иную зону. Однако и при донорном, и при акцепторном легировании (или, возможно, самолегировании) температурные зависимости коэффициента термоэдс нанотрубок симметричны относительно оси температур. Этот важный результат следует из известного факта зеркальности π-подзон и подтверждаются также данными экспериментов[3,4].

Модель термоэлектрогенератора

Критерием оценки эффективности материала для практического применения в энергетике или криогенной технике, как известно, служит эффективность термоэлектрических материалов z:

$$z=\frac{\alpha^2\sigma}{\chi}\,,$$

где α — коэффициент термоэлектродвижущей силы, σ — удельная электропроводность и χ — удельная теплопроводность.

Рис 2. Принципиальная схема термоэлемента. Цифрами обозначены: 1- упорядоченные одностенные нанотрубки, прикрепленные концами к поверхности с температурой T_2 . 2 — открытые многослойные нанотрубки, прикрепленные к поверхности с T_1 ; 3-проводниковое соединение.

Обычно величина zT (T-рабочая температура устройства) не превышает 0,8. Предположительно для нанотрубок ее можно увеличить в 5-8 раз вследствие уменьшения у и возможного увеличения о [5]. В частности, предлагается уменьшение теплопроводности у за счет создания небольшого вакуумного промежутка В термоэлементе (cm. нанотрубки 2).Известно, что отличаются аномально большой автоэмиссией [6]. В физической модели предлагаемого нами термоэлемента, предлагается разорвать цепь в месте контакта нанотрубок. Разрыв не скажется

значительным образом на проводимости всей системы из-за большого значения автоэмиссии нанотрубок. В то же время вакуумный зазор между контактами значительно уменьшит теплопроводность всей конструкции.

Заключение

Проведено вычисление коэффициента термоэдс углеродных нанотрубок с использованием кинетического уравнения Больцмана. Учтена цилиндричнойсть углеродной системы. Результаты расчетов сопоставлены с экспериментальными результататми, заимствованными из литературы.

Показано, что при выборе нанотрубок соответствующего качества и их специального дополнительного легирования возможно получение материала с достаточно большим значением α, который вполне может быть использован в производстве термоэлектических генераторов и (или) рефрижераторов. Физическая модель такого преобразователя предлагается

Литература

- 1. Мавринский А.В., Байтингер Е.М., Андрейчук В.П. Коэффициент термоэдс углеродных нанотрубок, 1-ая Международная конференция «Углерод: фундаментальные проблемы науки, материаловедение, технология», сборник тезисов, М. 2002. С.138.
- 2. J. Hone, I.Ellwood, M. Muno et. al. Phys.Rev.Lett. v.80, Nr 5, p1042, 1998.
- 3. H. E. Romero, G. U. Sumanasekera, G. D. Mahan, and P. C. Eklund, Thermoelectric power of single-walled carbon nanotube films, Pys. Rev. B, 65, 205410, 2002.
- 4. G.U. Sumanasekera, C.K.W. Adu, B. K. Pradhan, G. Chen, H. E. Romero, and P. C. Eklund, Thermoelectric study of hydrogen storage in carbon nanotubes, Pys Rev B, 65, 35408, 2001.
- 5. Chico L., Benedict L.X., Lonie S.G., Cohen M.L. Phys. Rev. B 54, 2600 (1996)
- 6. Sinitsyn N I et al Appl. Surf. Sci. 111 145 (1997).