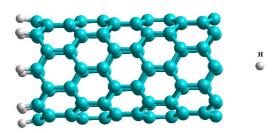
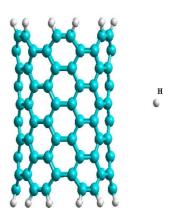
ИССЛЕДОВАНИЕ МЕХАНИЗМОВ ВНУТРЕННЕГО НАСЫЩЕНИЯ ОДНОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК МАЛОГО ДИАМЕТРА АТОМАРНЫМ ВОДОРОДОМ

Запороцкова И.В., Лебедев Н.Г., Чернозатонский Л.А., ⁽¹⁾ Запороцков П.А.

Волгоградский государственный университет, Университетский пр., 100, Волгоград, 400062, Россия

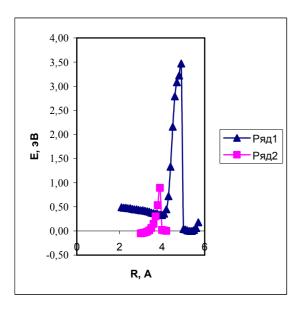

(1) Институт биохимической физики РАН, ул. Косыгина, 4, Москва, 117334, Россия *E-mail: irinaz@rbcmail.ru

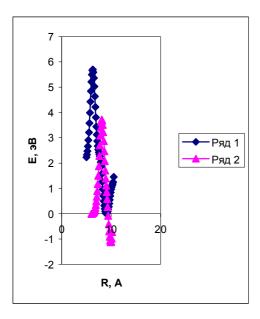
Введение


Известно, что некоторые вещества могут поглощать значительное количество водорода на единицу массы или объема. Такие материалы интенсивно исследуются, так как их использование в качестве топливных элементов чрезвычайно перспективно. В качестве водородопоглощающих материалов могут быть использованы углеродные нанотрубки [1-5], являющиеся хорошим аккумулятором водорода. Выполненные к настоящему времени теоретические квантово-химические исследования доказали возможность эффективной множественной адсорбции атомарного водорода на внутренней и внешней поверхности углеродных нанотрубок [6, 10 - 15, 22]. Однако механизм заполнения внутреннего объема углеродных нанотрубок атомами водорода до конца еще не выяснен.

Результаты и обсуждение

Предложены два способа внедрения адсорбирующихся атомов водорода внутрь трубки: 1) капиллярный — когда внедряющийся атом проникает внутрь трубки через торцевое отверстие тубулена (рис. 1); 2) внедрение путем «смачивания» - когда внедряющийся атом проникает внутрь трубки через боковую поверхность тубулена (рис.2).


Рис. 1. Модель процесса внутреннего насыщения тубулена (8, 0) «капиллярным» способом


Рис. 2. Модель процесса насыщения углеродной нанотрубки (6,6) методом «поверхностного смачивания».

Выполнены квантово-химические полуэмпирические исследования предложенных механизмов насыщения однослойных углеродных нанотрубок атомарным водородом. Рассмотрены молекулярные кластеры тубуленов типов (n,n) и (n,0), содержащие 6 и 8 гексагонов по периметру и обладающие цилиндрической симметрией. Внутрь трубок внедрялся атом H, причем в случае 1 он проходил через центр торцевого отверстия нанотрубки, а в случае 2 — через середину поверхностного гексагона.

Построены потенциальные кривые и определены потенциальные барьеры, которые преодолевает атом при внедрении (рис.2, 3). Исследованы способы преодоления барьера атомом Н: классический и квантовый (туннелирование). Определены основные характеристики этих процессов. Доказана возможность насыщения углеродных нанотруб атомарным водородом и реализация обоих предложенных механизмов. Определены энергетически более выгодные пути проникновения атомов Н внутрь тубуленов.

Рис. 3. Профиль поверхности потенциальной энергии процесса внутреннего насыщения углеродной нанотрубки «капиллярным» методом»: 1 - для (6, 6); 2 - для (8, 0).

Рис. 4. Профиль поверхности потенциальной энергии процесса внутреннего насыщения углеродной нанотрубки методом «поверхностного смачивания»: 1 – для (8, 0); 2 – для (6, 6).

Выводы

1. Установлено, что для трубок типа (n, 0) наиболее эффективным способом насыщения является капиллярный способ. Для трубок ти-

па (n, n) энергетически более эффективно насыщение путем поверхностного смачивания.

- 2. Квантово-химические расчеты предсказали, что для капиллярного способа заполнения нанотрубок наиболее вероятным оказывается процесс классического преодоления потенциального барьера атомами водорода. Следует отметить, что в данной работе не исследовалось влияние на характеристики процесса наличие функциональных групп, которые могли бы находится на границе трубки, благодаря граничным ненасыщенным связям. Это является предметом дальнейшего исследования.
- 3. Установлено, что наиболее стабильным является размещение проникающего в трубку атома водорода в центре исследованных нанотубуленов на продольной оси.

Благодарности

Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (грант № 04-03-96501), в рамках Российской научно-технической программы «Актуальные направления в физике конденсированных сред» (направление «Фуллерены и атомные кластеры») и Российской программы «Низкоразмерные квантовые структуры».

Литература

- 1. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanatubes, Academic Press, 1996, 965 P.
- 2. Eletskii A.V. Sorbcionnie svoistva uglerodnih nanostructur (Sorption properties of carbon nanostructures). Uspehi Fiz. Nauk, 2004, **174**(11), 1191 1230.
- 3. Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века.: Техносфера, Москва, 2003. 336 с.
- 4. ZaporotskovaI.V., Lebedev N.G., Chernozatonskii L.A. Quantum-chemical investigations of single wall carbon nanotube hydrogenation processes. Hydrogen materials science and chemistry of carbon nanomaterials. NATO Science Ser., II Mathematics, Physics and Chemistry, 2004, 172, 243 258.
- 5. Запороцкова И.В., Литинский А.О., Чернозатонский Л.А. Особенности сорбции легких атомов на поверхности углеродных нанотруб. Письма в ЖЭТФ, 1997, **66** (12), 799.