ВОДОРОДСОДЕРЖАЩИЕ МЕТАЛЛОУГЛЕРОДНЫЕ ДИСПЕРСНЫЕ КОМПЛЕКСЫ

<u>Дубовой А.Г.,</u> Щур Д.В., $^{(1)}$ Патока В.И., $^{(1)}$ Колесник В.Н., $^{(1)}$ Нищенко М.М., Тесленко Л.О.

Институт проблем материаловедения им. Францевича НАН Украины, ул. Кржижановского 3, Киев, 03142 Украина ⁽¹⁾Институт металофизики им Г.В. Курдюмова НАН Украины, бульв. Акад. Вернадского, 36, Киев, 03142 Украина

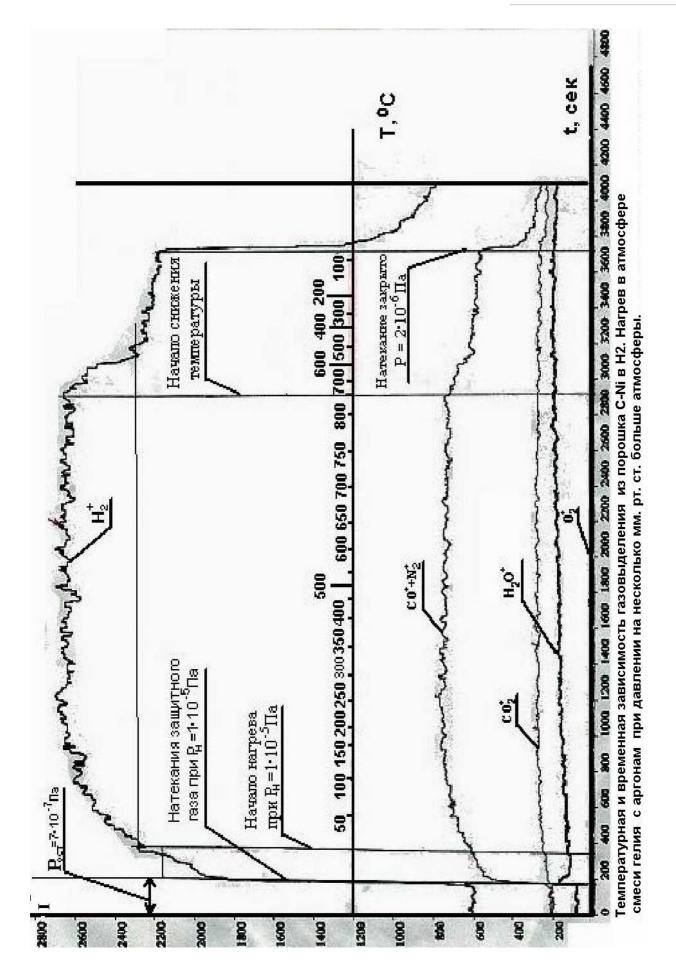
Введение

Сорбционные свойства наноструктурных материалов существенно зависят от их чистоты и, следовательно, от технологии их изготовления. Изучение газовыделения наноматериалов в сверхвысоком вакууме позволяет выяснить влияние примесей внедрения на их сорбционные свойства, провести очистку отжигом при высоких температурах для улучшения стабилизации ИХ сорбционных, эмиссионных и других свойств.

Изучение газовыделения из наноструктуных материалов проводилось в сверхвысоковакуумной установке ($P_{OCT} \sim 10^7 \, \Pi a$) использованием масс-спектрометра МХ-7304. Рабочий вакуум при нагреве исследуемых образцов составлял $1.10^{-5} \div 2.10^{-6}$ Па. Исследовались дисперсные порошки композитов Ni; полученные электроэрозионным методом в спирте, охлаждённом жидким азотом, до температуры его замерзания (≈ -110 °C). Изучение газовыделения из образов дисперсных порошков проводили 20-800 °C диапазоне температур при непрерывном её повышении со скоростью 2-3 K/c.

Результаты и обсуждение

Анализ полученных масс-спектров (рис. 1) показывает наличие большого количества H_2 (2 а.м.), значительно меньше $CO+N_2$ (28), CO_2 (44), H_2O (18) и в малых


количествах углеводородных соединений C_nH_m (15,16). Соотношение интенсивностей пиков в масс-спектрах изменяется в процессе нагрева. Максимальное газовыделение по водороду наблюдается в диапазоне температур 250-400 °С. При повторном нагреве образцов выделение газовых примесей существенно изменяется.

Выводы

Исследование газовыделения дисперсных композитов показывает наличие порошках Ni И LaNi₅ значительного содержания элементов используемой органической жидкости и растворённых в ней различных газов (H_2 , O_2 , CO и CO_2). Эти результаты подтверждают данные по исследованию порошков Ni [1], полученных различных средах, обнаружено значительное количество примесей, которые являются элементами используемой жидкости и образуют с ним различные соединения.

Литература

1. В.П. Залуцкий, Е.А. Клиндухов, Н.С. Кобзенко, В.И. Патока, А.Е.Перекос, К.В.Чуистов. Структура, фазовый и элементный состав электроэррозионных порошков никеля. Металлофизика,-1991, т. 13, №12, С.35-40.

