ИЗНОСОСТОЙКОСТЬ ФУЛЛЕРЕНОВОГО ПОКРЫТИЯ C_{60} В МОДЕЛЬНОЙ ЖИДКОСТИ ОРГАНИЗМА

<u>Лашнева В.В.</u>, Дубок В.А.*, Ткаченко Ю.Г., Матвеева Л.А.⁽¹⁾

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, ул. Кржижановского 3, Киев, 03142 Украина ⁽¹⁾ Институт физики полупроводников НАН Украины пр. Науки 115, Киев, 03150 Украина * Fax 38 (044) 424-21-31, E-mail: dubok@ipms.kiev.ua

Введение

Разработка материалов для хирургических имплантатов является одной из важнейших задач современного материало-Самая многочисленная ведения. имплантаций - эндопротезирование тазобедренного сустава, т.е. замена поврежденного сустава имплантатом - одновременно одна из самых эффективных хирургических операций, практически которая полностью навливает трудоспособность и возвращает обреченных на инвалидность людей нормальной жизни. Ежегодно мире выполняется около 1 млн. таких операций, и их количество постоянно растет.

В значительной степени технический ресурс эксплуатации эндопротезов ограничен износостойкостью входящих в них пар трения, которые в большинстве конструкций составляют сплав титана ВТ 6 и полиэтилен Chirulen. "Слабым звеном" такой пары является полиэтилен, средний износ которого достигает 0,1 мм в год, что ограничивает эксплуатацию эндопротеза 5 -10 годами, в зависимости от физической активности пациента.

Работа выполнена с целью повышения износостойкости полиэтилена в паре трения со титана увеличения продосплавом лжительности функционирования эндопротезов тазобедренного сустава. Для этого полиэтилен Chirulen наносили фуллереновое покрытие C_{60} И исследовали его износостойкость модельной жидкости организма.

Результаты и обсуждение

Покрытие наносили на полиэтиленовую подложку в вакууме термическим испарением высокочистого порошка C_{60} из эффузионной танталовой ячейки при температуре испарителя $470~^{0}C$. Структуру и химический состав

покрытия исследовали методами рентгенографии, атомно-силовой микроскопии, Фурье ИК-спектроскопии и спектроскопии комбинационного рассеяния. Толщину покрытия определяли с помощью интерферометра МИИ-4. Она составляла 1,0-1,5 мкм. Износостойкость определяли по штифто-дисковой схеме (pin-ondisk). Штифт - полиэтилен Chirulen с покрытием на основе фуллерена С₆₀ и без покрытия, диск - сплав титана ВТ 6. Условия испытаний: нагрузка - 5 H/мм², скорость скольжения -0,1 м/c, температура - $37 \, {}^{0}\text{C}$, среда - модельная жидкость организма (раствор Рингера). Продолжительность испытаний Контролировали объем снятого при трении полиэтилена после каждого 5 - часового цикла трения.

Результаты измерения приведены в таблице.

Таблица - Износ полиэтилена Chirulen с покрытием C_{60} и без покрытия в паре трения со сплавом титана $BT\ 6$

Ча	Износ полиэтилена, см ⁻³	
сы		
	Chirulen без	Chirulen c
	покрытия	покрытием С60
5	0.0160	0.0023
10	0.0260	0.0033
15	0.0320	0.0040
20	0.0390	0.0043

Выводы

Таким образом, фуллереновое покрытие C_{60} существенно повышает износостойкость и уменьшает износ полиэтилена Chirulen в паре трения со сплавом титана BT - 6 и может быть рекомендовано для использования в узлах подвижности эндопротезов суставов.