ВЛИЯНИЕ НАНОТРУБОК НА НАНОДИФФУЗИЮ АТОМОВ ВОДОРОДА И ПРОЦЕССЫ ЭЛЕКТРОННОГО ТРАНСПОРТА

Михайлов А.И. *, Кузина С.И., Рябенко А. Г., Разумов В.Ф.

Институт проблем химической физики РАН проспект акад. Семенова 1, Черноголовка, Московская обл, 142432, Россия * Факс (096)515 54 20, E-mail: alfaim@icp.ac.ru

Исследование влияния углеродных нанотрубок (НТ) на структурную организацию матрицы и процессы электронного транспор та весьма актуальны [1]. В настоящей работе изучено влияние НТ на процессы низкотемпературного (77К) радиолиза, инже кции и транспорта электронов, их стаби лизации и акцептирования протонами с обра H^{\bullet} зованием атомов при облучении стеклообразных матриц серной кислоты (H₂SO₄ 98% + H₂O 2% масс.). Исследовано также влияние индивидуализированных ультразвуком HT на процессы нанодиффузии H[•] при ИХ гибели. 3a кинетикой накопления парамагнитных центров при радиолизе и процессом их гибели (при разогреве радиолизованных образцов) следили методом ЭПР.

Основной механизм радиолиза сильных минеральных кислот при низких темпера турах заключается в отрыве электрона от аниона кислотного остатка, инжектирование и транспорт его в окружающую матрицу, замедление (в т.ч. с последующими актами рассеяния и/или неупругого повторной ионизации), термолизация и захват протоном с образованием атома Н[•]. На рис.1а приведен спектр ЭПР радиолизованных образцов H₂SO₄ и H₂SO₄+HT. Характерный дублет с расщеплением 50,5 мТ принадлежит спектру ЭПР атома Н. Средняя часть спектра обусловлена парамагнитными центрами R_S^{\bullet} , образующимися при радиолизе анионов кислотных остатков. Спектры ЭПР атомов Н° и «тяжелых» частиц R_S^{\bullet} идентичны для чистой H_2SO_4 и для системы H₂SO₄+HT, и прямого «химического» взаимодействия H[•] + HT не обнаружено. Однако присутствие нанотрубок практически в ~2 раза увеличивает скорость накопления как Н[•], так и R_S^{\bullet} , так что радиационный вы ход $G_H(H_2SO_4)\cong 0.035$, $G_H(H_2SO_4+HT)\cong 0.07$; $G_{Rs}(H_2SO_4)\cong 1.1$, $G_{Rs}(H_2SO_4+HT)\cong 2.3$ 1/100 9B, Увеличение соответственно. радиационно го выхода G_H и G_{Rs} в присутствии HTсвидетельствует об их влиянии на процес сы радиолиза, передачи энергии и тран матрице H₂SO₄+HT. спорта заряда В Учитывая концентрации величину $C_{\rm HT} \approx 0.16\%$ - 0.36%(масс.), можно заключить, что такое влияние НТ распространяется по крайней мере на расстояние, сравнимое с расстоянием между нанотрубками и составляет 100-300 нм.

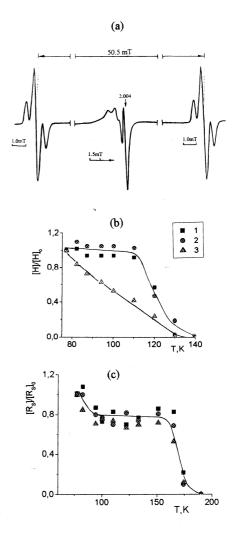


Рис.1. Спектр ЭПР γ -облученного (при 77К) 0,16% раствора нанотрубок в серной кис лоте (а); зависимость от температуры концентрации атомарного водорода (b) и радикалов R_S (c) при нагреве радиолизованных растворов НТ в H_2SO_4 в концентрации 0.38 (1), 0.16% (2) и чистой кислоты H_2SO_4 (3).

Обычно введение высоко сопряженных добавок «защищает» матрицу при радиолизе, и радиационно-химические выходы продуктов матрицы (и выход радикалов) уменьшаются.

Наблюдаемое одновременное увеличение G_H и G_{Rs} связано, по-видимому, с дополнительной инжекцией «быстрых» электронов из HT при радиолизе, причем вероятность стабилиза ции атомов H^{\bullet} сохраняется и составляет $G_H/G_{Rs}\approx 0{,}032$.

В процессах рекомбинации и гибели активных радикалов лимитирует стадия их нанодиффузионного сближения. При этом, если «громоздкие» молекулярные частицы (такие как $R_{\rm S}^{\bullet}$) перемещаются по вакансионному механизму, то для «маленького» Н - атома доступен междоузельный механизм диф фузии [2]. На рис.1 b и с представлены кривые термической гибели H^{\bullet} и R_S^{\bullet} при постадийном разогреве у-облученных образцов. Как видно, вид кривых гибели R_S^{\bullet} не зависит от присутствия НТ, и эффективная рекомбинация наблюдается вблизи температуры расстекловывания матрицы Т_о≈175К. Гибель Н• происходит при более низких температурах (что согласуется с междоузельным механизмом диффузии Н[•]), и присутствие HT резко сужает интервал эффективной рекомбинации. Широкий температурный интервал гибели Н в чистой кислоте отражает кинетическую неоднородность процесса, обусловленную дисперсией активационных барьеров и глубин ловушек [3]. Таким образом, присутствие НТ влияет, в основном, на междоузельные нанодиффузионные процессы, уменьшая их кинетическую неоднородность и,

соответственно, улучшая физическую однородность окружающей нанотрубку твердой застеклованной матрицы. Возможно, присутствие нанотрубки в значительной степени снимает механические напряжения «закалки». может оказаться весьма важным при создании различных композиционных материалов. При этом, как и в случае электронного транспор та при радиолизе, влияние НТ обладает значительным дальнодействием, распространяющемся на 100 - 300нм и более. Заметим, что в [1] также обнаружены дальнодействующие «организа-ционные» эффекты влияния нанотрубок на процессы кристаллизации безводной серной кислоты $(H_2SO_4 100\% + SO_3 2\%)$.

Литература

- 1. Wei Zhou, Paul A. Heiney, Hua Fan, Richard E. Smalley and John E. Fischer. // J. Am. Chem. Soc. 2005. 127. P.1640.
- 2. Atkins and M.C.R. Symons. Elsevier Publ. П. Эткинс, М. Саймонс. Спектры ЭПР неорганических радикалов. Изд. «Мир», Москва, 1970 (Russian translation of "The Structure of Inorganic Radicals" by P.W. Comp. Amsterdam-London-New York. 1967).
- 3. Mikhailov A.I., Kuzina S.I. // Europ. Polym.J., 1990, v.26, No 1, p.105.