РАСЧЕТ ИНТЕНСИВНОСТИ СИНГЛЕТ-ТРИПЛЕТНЫХ ПЕРЕХОДОВ В ФУЛЛЕРЕНЕ МЕТОДОМ ФУНКЦИОНАЛА ПЛОТНОСТИ С УЧЕТОМ КВАДРАТИЧНОГО ОТКЛИКА

Минаев Б. Ф.

Черкасский Государственный технологический университет, Бул.Шевченкоб 460, Черкассы, 18006, Украина

Введение

Синглет-триплетные (S-T) переходы в фуллерене, рассчитанные в данной работе, важны не только для фундаментальной расшифровки электронной структуры и симметрии волновых функций основного состояния и ряда низших возбужденных состояний молекулы C_{60} , но и для многих прикладных вопросов.

Результаты и обсуждение

Фуллерен С60 и его аналоги находят применение В молекулярной электронике, в фототерапии (сенсибилизаторы синглетного ${}^1\dot{\Delta}_{\rm g}$ кислорода), в приборах нелинейной оптики, и в частности - в оптических ограничителях [1]. Все это связано специфичными свойствами триплетного (T_1) состояния C_{60} . Время жизни T_1 состояния довольно велико (0.4 мс в замороженной матрице), а его квантовый выход близок к единице. Фуллерен С60 имеет очень слабое поглощение в видимой области (почти низкой прозрачен) при интенсивности падающего света, когда почти все молекулы находятся в основном синглетном состоянии (S_0) . При более мощном освещении молекулы фуллерена переходят в метастабильное Т₁ состояние; они там накапливаются за счет синглет-синглетного поглощения (S_0 - S_π) с последующей интеркомбинационной конверсией (S₁ -T₁). При накоплении достаточной концентрации триплетных молекул C_{60} интенсивное нарастает триплет-триплетное поглощение (Т₁-Т_п) в видимой области спектра и прозрачное вещество тускнеет, становится непрозрачным при ярком свете.

Спектрам поглощения и флуоресценции фуллеренов посвящено большое теоретических и экспериментальных работ (обзоры даны в [1-3]). Молекула C_{60} в S_0 состоянии имеет высокую основном симметрию I_h.и возбужденные состояния многократно вырожденными. являются Оптимизация геометрии молекулы проведена с помощью гибридного функционала плотности ВЗLYР [1] в базисе 6-31 G. Наш расчет дал длины C-C связей, равные 1.395 Å и 1.453 Å, в хорошем согласии с экспериментом (1.391 Å и 1.455 Å, соответственно) [1]. Спектры S_0 - S_{π} и T_1 - T_{π} поглощения рассчитаны на основе теории функционала плотности (ТФП), зависящей от времени [2], которая представляет собой метод линейного отклика [3], оформленный в рамках ТФП. Энергия T_1 состояния (1.7 эВ) получена в хорошем согласии с экспериментом (1.6 эВ). Расчет предсказывает, что низшее Т₁ состояние имеет симметрию $1^{3}T_{2g}$ и отделено от других триплетов значительной энергетической щелью $(0.4 ext{ } ext{9B}).$ Оптимизация геометрии в Т₁ состоянии подтверждает наличие эффекта Яна-Теллера для трижды вырожденного $1^{3}T_{2g}$ терма. С учетом спина имеем 9 подуровней, которые очень слабо расщеплены в нулевом магнитном поле, если рассматривать группу симметрии $1^{3}T_{2g}$ расщепляется Терм вырожденных спиновых подуровней $H_{\mbox{\tiny g}}$ типа и четыре подуровня G_g типа. Расчет спинспинового взаимодействия дает параметр расщепления в нулевом поле (РНП) равный D = 0.034 см⁻¹ в разумном согласии с данными ЭПР

 $(D=0.045~\text{cm}^{\text{-1}})~[6].~S_0-T_1$ переход $(1^1A_g-1^3T_{2g})$ в неискаженной молекуле с симметрией I_h остается запрещенным даже при учете спинорбитального взаимодействия (COB).

работе [2] проведен вибронного взаимодействия по механизму Герцберга-Теллера совместно с учетом СОВ для объяснения спектра фосфоресценции С₆₀. Такой спектр, полученный в матрице ксенона, содержит интенсивную 0-0 полосу [2,6], что говорит о сильном возмущении СОВ за счет эффекта внешнего тяжелого атома. Даже в матрице циклогексан - декалин (ЦД), где спектр сильно уширен, присутствие 0-0 полосы свидетельствует о влиянии межмолекулярных электростатических взаимодействий, понижающих симметрию С₆₀, на снятие спинового запрета с перехода $S_0 - T_1$. Авторы работы [2] свели однако проблему интенсивности $S_0 - T_1$ перехода к спин-вибронной проблеме в Ee симметрии I_h. решение В рамках полуэмпирического метода CNDO/S представляется нам весьма ненадежным. Первым шагом к расшифровке спектра

фосфоресценции C_{60} может служить неэмпирический расчет вероятности S_0-T_n переходов, разрешенных по симметрии с учетом СОВ, в рамках метода квадратичного отклика [5]. Результаты такого расчета методом ВЗLYP приведены в Таблице, где даны электрические дипольные моменты S_0-T_n

переходов ($M_{o\text{-n}}$), их энергии (E_n), константы скорости ($\kappa_n^{\text{ср.}}$) и радиационные времена жизни ($\tau_n^{\text{ср.}}$), рассчитанные в базисе 3-21G при равновесной структуре основного состояния C_{60} .

T _n	$E_n(\ni B)$	M _{o-n} (ea ₀)	$K_n^{\text{cp.}}(c^{-1})$	$\tau_n^{\text{cp.}}(c)$
1^3T_{1u}	2.961	0.00011	0.22	4.54
1^3 H _u	3.130	0.00020	0.83	1.20
2^3H_u	3.518	0.00021	1.20	0.84
3^3H_u	3.605	0.00081	32.2	0.03

Здесь дан момент для одного из орбитально вырожденных состояний; константы скорости (к_n ср.) и радиационные времена жизни $(\tau_n^{\text{ср.}})$ усреднены по трем спиновым подуровням. Так, для $1^{1}A_{g} \rightarrow 1^{3}T_{1u}$ перехода в каждую из трех компонент орбитально вырожденного T_{1u} состояния имеем два активных спиновых подуровня (скажем Т^х и T^{y}) с поляризацией вектора M вдоль осей v и x, соответственно. Для излучения $1^3 T_{1u} \rightarrow 1^1 A_2$ все три спиновых подуровня должны быть усреднены для каждого из трех орбитально вырожденных состояний. Для переходов 3 H_u \rightarrow 1^{1} A_g усреднены все 15 компонент. Радиационное время жизни триплетов. приведенных в Таблице, не может быть измерено, так как все они лежат много выше Т₁ состояния. Однако рассчитанные моменты S₀ - T_n переходов могут быть учтены при оценке радиационного времени фосфоресценции С60 по теории Герцберга-Теллера.

Учитывая результаты расчетов вибронного взаимодействия по методу CNDO/S [3] замечаем, что T_1 состояние эффективно смешивается с триплетами 3H_u типа за счет t_u моды колебания с частотой $1435~{\rm cm}^{-1}$. При этом переход $1^3T_{1u} \rightarrow 1^1A_g$ может черпать интенсивность из $S_0 - T_n$ переходов, приведенных в таблице. Вибронная полоса $1435~{\rm cm}^{-1}$ действительно активна в спектре фосфоресценции C_{60} в матрице ЦД [2,6]. Расчет показывает, что активны также колебания g_u и

 $h_{\rm u}$ мод в качественном согласии с опытными данными. Радиационное время жизни фосфоресценции C_{60} оценено равным 452 сек. Это много больше наблюдаемого времени жизни фосфоресценции C_{60} в матрице ЦД [2,6], что говорит о сильной безизлучательной дезактивации низшего триплетного состояния фуллерена C_{60} .

Расчет показал, что 1^3T_{1u} состояние имеет расщепление за счет СОВ, равное $0.42~{\rm cm}^{-1}$, что намного больше вклада спин-спинового взаимодействия, а также вклада СОВ в расщепление других орбитально вырожденных триплетов.

Литература

- 1. J.H. Hare, H.W. Kroto, R. Taylor. Chem. Phys. Lett. 1991, 177, 394.
- 2. M.G.Guiffreda, F. Negri, G. Orlandi. J. Phys. Chem. A 2001, 105, 9123.
- 3. A.D. Becke. J. Chem. Phys. 1993, 98, 5648.
- 4. I. Tunnell, Z. Rinkevicus, P. Salek, O. Vahtras, T. Helgaker, H. Agren. J. Chem. Phys. 2003, 119, 11024.
- 5. H. Agren, O. Vahtras, B. Minaev. Adv. Quant. Chem. 1996, 27, 71.
- 6. D. Baunsgaard, N. Harrit, F. Negri, G. Orlandi, J. Fredriksen, R. Wilbrandt. J. Phys. Chem. A: 1998, 102, 10007.
- 7. T. Hara, Y. Nomura, S. Narita, H. Ito, T. Shibuya. J. Mol. Struct. 2003, 589,139.