THE SINGLET-TRIPLET TRANSITIONS INTENSITY CALCULATION IN FULLERENE BY DENSITY FUNCTIONAL THEORY WITH ACCOUNT OF QUADRATIC RESPONSE METHOD

B.F. Minaev

Technological State University, Cherkassy, 18006, Ukraine

Introduction

The singlet-triplet (S -T) transitions in fullerene, calculated in the present work, are important not only for fundamental assignment of electronic structure and symmetry of wave functions of the ground state and a number of low-lying exited states condition of the C_{60} molecule, but also for many applied problems.

Results and discussion

Fullerene C₆₀ and its analogues have found wide application in molecular electronics, in phototherapy (sensibilizators of singlet ${}^{1}\Delta_{g}$ oxygen), in devices of nonlinear optics, and in particular - in optical limiting devices [1]. All these aspects are connected with specific properties of the lowest triplet state (T_1) of the C_{60} molecule. The life time of the T_1 state is rather large (0.4 ms in the frozen matrix), and its quantum yield is close to unit. Fullerene C₆₀ has very weak absorption in visible region (it is almost transparent) at low intensity of the incident light, when almost all molecules are basically the ground state (S_0) . At more powerful illumination the fullerene molecules are excited into the metastable T₁ state; they are accumulated there under the singlet-singlet absorption $(S_0 - S_n)$ with subsequent intersystem conversion $(S_1 - T_1)$. Under accumulation of sufficient concentration of the triplet molecules C₆₀ the intensive triplettriplet absorption (T₁- T_n) is rising in the visible region of a spectrum and the transparent substance grows dull, becomes opaque at bright light.

A large number of theoretical and experimental studies is devoted to spectra of absorption and fluorescence of fullerenes (reviews are given in [1-3]). The molecule C_{60} in the ground state has a high symmetry Ih and the exited states are highly degenerate. The optimization of geometry of a molecule is carried out with the help hybrid density functional B3LYP [1] in the 6-31 G basis. Our calculation has given the C-C bond lengths equal to 1.395 A and 1.453 A, in a good agreement with experiment (1.391 A and 1.455 A, respectively) [1]. The spectra of the S_0 - S_n and T_1 - T_n absorption are calculated by the time-dependent density functional theory (DFT), [2], which represents a method of the linear response [3], made in a frameworks of DFT. The energy of the T_1 state (1.7 eV) is received in a good agreement with experiment (1.6 eV). The account predicts, that the lowest T₁ state has the symmetry 1³T_{2g} and is separated from other triplets by a significant energy gap (0.4 eV). The optimization of geometry in the T_1 state confirms presence of the Yahn-Teller effect for the degenerate state. With the account of spin we have 9 sublevels, which are very poorly split in a zero magnetic field. The term $1^{3}T_{2g}$ is split in five degenerate spin sublevels of the H_g-type and four degenerate spin sublevels of the Gg type. The account of spin - spin interaction gives parameter of splitting in a zero field (ZFS) equal D = 0.034cm⁻¹ in a reasonable agreement with the EPR data $(D = 0.045 \text{ cm}^{-1})$ [6]. The S₀ - T₁ transition $(1^1 \text{Å}_g - 1^3 \text{T}_{2g})$ in the undistorted molecule with the symmetry I_h remains forbidden even at the account of spin- orbit interaction (SOI). In the study [2] the account of vibronic interaction by the Herzberg-Teller mechanism together with the account of SOI for an explanation of a phosphorescence spectrum is carried out. Such spectrum received in a Xe matrix, contains an intense 0-0 band [2,6], that speaks about strong SOI perturbation induced by effect of external heavy atom. Even in a cyclohexane-decaline (CD) matrix, where the spectrum is strongly broaded, the presence of the 0-0 band testifies the influence of intermolecular electrostatic interactions, which reduce the symmetry of C₆₀, on removal of a spin forbiddness of the S_0 - T_1 transition.

The authors of job [2] have reduced however the problem of the S_0 - T_1 transition intensity to a problem of spin-vibronic interaction in the symmetry I_h. Its solution in a framework of a CNDO/S method [2] seems to us rather unreliable. The first step to decoding a phosphorescence spectrum of C₆₀ can be solved by the non-empirical calculation of the S₀ - T_n transitions probability allowed by symmetry by account of SOI, within the framework of the quadratic response method [5]. The results of such calculation with a method B3LYP are given in the Table, where the electric dipole S_0 - T_n transition moments, their energy (eV), rate constant (K_n^{av}) , and radiative life times (τ_n^{av}) are given, designed in basis 3-21G at equilibrium structure of the ground state

T_n	$E_n(3B)$	M _{o-n} (ea ₀)	$K_n^{\text{cp.}}(c^{-1})$	$\tau_n^{cp.}(c)$
1^3T_{1u}	2.961	0.00011	0.22	4.54
1^3 H _u	3.130	0.00020	0.83	1.20
2^3H_u	3.518	0.00021	1.20	0.84
3^3H_u	3.605	0.00081	32.2	0.03

For radiation 1^3T_{1u} - 1^1A_g all three spin sublevels should be averaged for each of three orbitally degenerate states. For the ${}^{3}H_{u}$ - $1{}^{1}A_{g}$ transitions all 15 components are averaged. The radiative life time of all triplets, given in the Table, can not be measured, as all of them lay above the T_1 level. However the calculated S_0 - T_n transition moments can be taken into account for estimation of the phosphorescence lifetime in a framework of the Herzberg-Teller theory. Taking into account results of accounts of vibronic interaction by a CNDO/S method [3] one can notice, that the T₁ state is effectively mixed with the ³H_u triplets by the t_u vibrational mode of frequency 1435 cm^{-1} . Thus the $1^3T_{2g} - 1^1A_g$ transition can borrow intensity from the S_0 - T_n transitions given in the table. Vibronic band 1435 cm⁻¹ is really active in the C_{60} phosphorescence spectrum in CD matrix [2,6].

The calculated phosphorescence lifetime is equal to 452 s. This is larger than the observed

 C_{60} phosphorescence lifetime in CD matrix [2,6], which indicates a strong nonradiative deactivation of the lowest triplet state of fullerene C_{60} .

References

- 1. J.H. Hare, H.W. Kroto, R. Taylor. Chem. Phys. Lett. 1991, 177, 394.
- 2. M.G.Guiffreda, F. Negri, G. Orlandi. J. Phys. Chem. A: 2001, 105, 9123.
- 3. A.D. Becke. J. Chem. Phys. 1993, 98, 5648.
- 4. I. Tunnell, Z. Rinkevicus, P. Salek, O. Vahtras, T. Helgaker, H. Agren. J. Chem. Phys. 2003, 119, 11024.
- 5. H. Agren, O. Vahtras, B. Minaev. Adv. Quant. Chem. 1996, 27, 71.
- D. Baunsgaard, N. Harrit, F. Negri,
 G. Orlandi, J. Fredriksen, R. Wilbrandt.
 J. Phys. Chem. A 1998, 102, 10007.
- 7. T. Hara, Y. Nomura, S. Narita, H. Ito, T. Shibuya. J. Mol. Struct. 2003, 589,139.