ОСОБЕННОСТИ РЕНТГЕНОВСКИХ *СКа*-СПЕКТРОВ ЭМИССИИ УГЛЕРОДНЫХ ВОЛОКОН

Зауличный Я.В., Солонин Ю.М., Звезда С.С.

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, ул. Кржижановского 3, Киев, 03142 Украина

Введение

Методом ультрамягкой рентгеновской эмиссионной спектроскопии проведено исследование энергетического распределения электронных состояний углеродных волокнах, полученных на основе полиакрилнитрила, разной толщины при различных способах ориентации направлению отбора излучения.

Результаты и обсуждение

Выявлена зависимость формы $CK\alpha$ -полос эмиссии от их ориентации относительно направления отбора рентгеновского излучения. В волокнах, ориентированных так, что оси p_z -орбиталей находятся под углами, изменяющими свое значение в диапазоне $0^{\circ}\div180^{\circ}$ к направлению выхода рентгеновских квантов, интенсивность максимума $CK\alpha$, отражающего π -состояния, на ~ 30 % ниже, чем в тех же волокнах, при ориентации которых p_z -орбитали перпендикулярны направлению отбора излучения (рис.1).

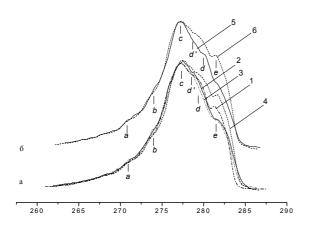


Рисунок 1. — Совмещение $CK\alpha$ -полос: a) графита (1), крупного углеродного волокна, ориентированного способами: I (2), II (3), III (4) и δ) тонкого углеродного волокна, ориентированного по типам I (5), III (6).

Обнаружена особенность в энергетическом распределении валентных электронов волокон, отражающая дополнительное взаимодействие p_z -электронов с электронами в смешанных $\pi+\sigma$ -состояниях, которое отсутствует в

графите. Это связано с изменением углов между осями p_z -орбиталей в результате коаксиального и винтового скручивания графеновых слоев в углеродном волокне.

Выявлено наноразмерное сужение $CK\alpha$ -полос углеродных волокон (рис.2) при их утончении за счет низкоэнергетического коротковолнового контура. смещения снижение энергии указывает на σ + π -состояний в результате большего перекрытия при значительном увеличении кривизны более узких графеновых слоев, число которых существенно возрастает нановолокнах.

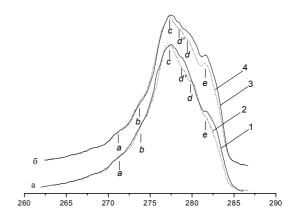


Рисунок 2. — Сопоставление эмиссионных рентгеновских полос a) волокон, ориентированных способом I — крупного (1) и тонкого (2), б) волокон, ориентированных по типу III — крупного (3) и тонкого (4).

Выволы

Увеличение количества разорванных связей в графеновых слоях до числа, соизмеримого внутри их приводит к вырождению обеспечивающих их $\sigma+\pi$ - и π -состояний, следствием которого является энергетическое перераспределение валентных электронов в нановолокнах.

Работа выполнена при поддержке УНТЦ (грант №3101).