МОЛЕКУЛЯРНОЕ СТРОЕНИЕ И КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ФТОРИДОВ ФУЛЛЕРЕНОВ

<u>Попов А.А. ^{1*}</u>, Сенявин В.М. ¹, Мельханова С.В. ¹, Кареев И.В. ², Seppelt K. ³, Болталина О.В. ^{1,4}

¹ Химический Факультет МГУ, Ленинские Горы, 119992 Москва, Россия
² Институт проблем химической физики РАН,
Черноголовка, Московская обл. 142432, Россия
³ Institute of Inorganic Chemistry, Freie University Berlin, Germany
⁴ Department of Chemistry, Colorado State University, Fort Collins, USA
^{*} Fax: 7-095-9328846, e-mail: popov@phys.chem.msu.ru

Введение

Фторофуллерены являются наиболее изученными галогенопроизводными С₆₀, но данные по их спектрам и строению до сих пор далеки от полноты. Предыдущие экспериментальные исследования выявили сложную структуру колебательных спектров этих соединений, что неудивительно ввиду большого количества атомов в их молекулах. Интерпретация таких спектров требует привлечения надежных расчетных данных, но из-за большого размера систем их теоретическое моделирование было практически неосуществимо. Более того, в ряде случаев однозначное определение молекуллярного строения было невозможно на основании имеющихся данных. Например, T_h and D_{5d} симметрия фторофулеренов $C_{60}F_{24}$ и $C_{60}F_{20}$, соответственно, была определена методом ЯМР, но этот метод не позволил ответить. какой из двух возможных изомеров каждого из соединений был синтезирован.

Результаты и обсуждение

Настоящая работа имела целью полную интерпретацию колебательных спектров ряда фторидов фуллеренов. Уже известные спектральные данные были дополнены нами впервые измеренными спектрами комбинационного рассеяния $C_{60}F_{20}$ и $C_{60}F_{24}$, а также измерениями спектров поглощения $C_{60}F_{18}$, $C_{60}F_{36}$, и $C_{60}F_{48}$ в дальней ИК области. Для получения более полной информации о слабых полосах были изучены спектры таблеток, спрессованных непосредственно из изучаемых соединений.

Ha первой стадии работы путем сопоставления экспериментальных считанных методами DFT колебательных спек тров было однозначно определено строе ние $C_{60}F_{20}$ и $C_{60}F_{24}$. При этом было обнаружено, что DFT систематически занижает частоты валентных колебаний С-F. Для устранения этого недостатка была применена процедура масштабирования силовых полей. Молекула С₆₀F₂₀ является наиболее удобным объектом для оптимизации набора масштабирующих

множителей, универсальных для всего ряда фторофуллеренов: в силу высокой – D_{5d} – симметрии обладает она сравнительно простыми и легко интерпретируемыми спектрами и, в то же время, большое количество экспериментально регистрируемых колебаний обеспечивает стабильность решения обратной задачи. Согласованной процедуры и для универсальность полученных масштабирующих множителей были под тверждены хорошим соответствием эксперимен тальных И рассчитанных колебательных спектров молекул $C_{60}F_{18}$ (рис. 1), $C_{60}F_{36}$ и $C_{60}F_{48}$. Это позволило провести полную интерпретацию колебательных спектров фторофуллеренов и на основании спектральный данных установить изомерный состав $C_{60}F_{36}$ и $C_{60}F_{48}$, представляющих собой смеси изомеров.

Выводы

Сочетание экспериментальных методов колебательной спектроскопии и квантово-механических расчетов позволило уточнить изомерный состав и провести полное колебательное отнесение для ряда фторофуллеренов.

Работа выполнена при поддержке РФФИ (гранты 03-03-32179 и 03-03-33188), гранта Научная Школа НШ-1275.2003.03, а также программы Volkswagen Stiftung (1/77 855).

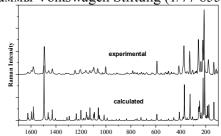


Рис. 1. Экспериментальный и рассчитанный спектры KP $C_{60}F_{18}$