ВЛИЯНИЕ ЭЛЕКТРОКИНЕТИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТИ БИОЦИДНЫХ НАНОМАТЕРИАЛОВ НА ИХ СЛУЖЕБНЫЕ ХАРАКТЕРИСТИКИ

<u>Шевченко В.М., Дуда Т.И., Подгорный А.В.*</u>

Национальный Технический Университет Украины «КПИ» пр. Победы, 37, Киев, Украина * E-mail: ndelusion@ua.fm

О том, что материалы, состоящие из целлюлозных волокон, как самого распространенного в природе углевода, подвержены воздействию разного типа плесневых грибов и микроогранизмов, известно давно. Многие бактерии, актиномицеты и грибы используют целлюлозу в качестве источника углерода. Поэтому проблема получения биоцидного материала, который не попадает под их действие, волнует многие отрасли народного хозяйства (пищевую, медицинскую, электротехническую, строительную и т.д.).

Биостойкость целлюлозным материалам придают несколькими путями: механически — путем пропитки (например, битумом или ламинированием); введением фунгицидов, которые нарушают ферментативную систему грибов и тем самым делают практически невозможным для них расщепление клетчатки; изменением химической природы целлюлозы, модифицируя ее (например, биологически устойчива ацетилцеллюлоза, метилцеллюлоза) и т.д.

В данном исследовании изучена возможность получения тонкого бумаго-подобного

материала, содержащего волокна неорганической природы (базальта) в композициях с целлюлозными волокнами в качестве связующих для получения прочного биостойкого материала.

В композициях использовались два типа волокнистых частичек (базальтовые и целлюлозные), они имеют одинаковый по знаку и разный по величине электрокинетический потенциал, который возникает на границе раздела фаз и во многом определяет силы взаимодействия частиц. При перезарядке поверхности одного из компонентов, например, целлюлозных волокон, создаются наилучшие условия для взаимной коагуляции между компонентами, и полученный материал обладает лучшими физико-химическими свойствами и большей биопидной стойкостью.

Известно, что бумаги из древесной целлюлозы (сульфитной или сульфатной) поражаются грибами в значительно большей степени по сравнению с бумагой из льняного или хлопкового волокна, а из древесной — бумаги из сульфатной целлюлозы. Поэтому в композициях была использована сульфатная целлюлоза с градусом помола 60^0 и базальтовое

Таблипа

Содерж. целлюл.	Физико-механические показатели					Степень наростания грибов, баллы		
волокна,	Разрывная	Излом	Сопротив.	Капилляр-	Время	В	Ha	Во
%	длина,	(ч.д.п.)	току	ное впи-	свободного	жидкой	повер.	влаж-
	M		воздуха,	тывание	истечения,	среде	твердой	ной
			мм.вод.ст		мин.		фазы	камере
Исходное целлюлозное волокно								
15	38	16	26	44,0	1,15	3	3	3
35	158	42	20	55,4	1,02	5	5	5
50	1902	1068	18	56,4	1,00	7	8	8
70	6780	1324	16	84,4	0,96	9	9	9
Перезаряженное целлюлозное волокно								
15	56	28	28	46,2	1,02	1	1	2
35	172	48	24	58,6	0,96	4	4	3
50	2700	1400	20	62,0	0,88	5	4	4
70	7400	1510	15	88,8	0,82	8	8	7

волокно диаметром 0,75 мкм, а также сульфат алюминия марки ч.д.а. Измерения электрокинетического потенциала проводили на установке и по методике, разработанной в [1], расчеты проводили по формулам Гельмгольца-Смолуховского.

Испытания биостойкости проводили на смеси грибов, т.к. в таком случае совсем неактивные грибы в культуре с активными могут увеличивать активность. Были использованы 10 видов грибов, среди которых присутствовали и сильные «целлюлозоразрушители»: Stachybotrus atra, Chaetomium globosum и Paecilomyces varioti.

Методика проведения опытов складывалась из двух частей: визуальных наблюдений и количественной характеристики физико-механических свойств. Для большей объективности оценки композиционных материалов грибостойкость проверялась тремя методиками: в жидкой минеральной среде Ван-Итерсона, на поверхности выщелоченного агара и во влажной камере при относительной влаж ности воздуха 98%. Посевы просматривались еженедельно в течение двух-трех месяцев. Обрастание материала оценивалось в 10-бальной

системе, где 10 – высшая степень обрастания (см. таблицу).

Из данных таблицы видно, что предварительная (до контакта частиц, входящих в состав композиции) перезарядка поверхности одного из волокон обеспечивает улучшение физико-механических и биоцидных характеристик готового материала.

Увеличение содержания базальтового волокна повышает стойкость материалов к воздействию плесневых грибов и микро-организмов.

Литература

- 1. Алексеев О.Л., Шевченко В.М., Дуда Т.И. Фильтровальный бумагоподобный материал базальтового волокна. на основе Труды І-й международной науч конфе-ренции нопрактической «Защита среды. окружающей здоровье. безо пасность сварочном производстве», Одесса, сентябрь, 2002, с.320-326.
- 2. Загуляева З.А. К вопросу биостойкости бумаги. В кн. Проблема долговечности бумаги и документов, М.-Л., 1964, с.32-36.