## THE COVALENT-BAND MODEL OF HYDROGEN KEEPING IN FULLERENE AND OF THE CATALYSIS

## Mitsek A. I.\*

Department of Solid State Theory, G. V. Kurdyumov Institute for Metal Physics, N.A.S.U., 36 Academician Vernadsky Blvd., UA-03680 Kyyiv-142, Ukraine

\* Fax: +(380) 44 4242561; E-mail: tatar@imp.kiev.ua

Semiconductor (s/c) state of fullerene (FUL) is broken by solution of H ions on its net. The theory must take into account not only the covalent C-H-bonds, but also the appearance of admixture conduction band (band electrons). The manyelectron operator spinors (MEOS) representations for C- and H-ions and the Fermi operators of band quasi-particles (electrons and holes) define the Hamiltonians of their interactions. The basic part of covalent energy  $\Gamma^{C-H}$  predominates over the bond energy of H<sub>2</sub> molecule and breaks up it. H-ions either remain on FUL net, or penetrate into FUL volume. The equations of their states depend on H<sub>2</sub> kinetic energy. H concentration on FUL net depends on temperature T through the function  $\Gamma^{C-H}(T)$ . The activation energy of H diffusion on FUL is  $E_a \sim \Gamma^{C-H}(T)$ .

The chemical (covalent) bond fluctuations (CBF) are represented by the Fourier image of MEOS. They form the thermal part of covalent energies. The combinations of CBF spectra and ionization energy  $E_0$  of C ions are parts of expressions for the width of forbidden band  $E_{\rm g}(T)$ . They define mobilities of electrons and holes in s/c state and possibility of FUL metallization changed.

(the Fermi energy  $\varepsilon_F$ ), when H concentration is

CBF contribution decreases  $\Gamma(T)$  and  $E_a(T)$ . This favours H-ions leaving FUL. H-ions diffusion on FUL net favours catalysis. The breaking up of  $N_2$  and other molecules and their bond with FUL net are considered by analogy with  $H_2$ . The collision of diffusible (with different velocity) H and N ions favours the formation of  $H_4N$  and other molecules. The theory allows calculating the chemical reaction rate (with catalysis on FUL) at different temperatures [1].

The calculated dependence of H concentration within FUL on temperature allows calculating H absorption, its keeping in FUL system and its extraction from this system at heating, the influence of magnetic field (taking into account magnetic state and magnetic admixture in FUL [2]), pressure, etc.

## References

- 1. Mitsek AI. Metallofiz. Noveishie Tekhnol. 2005; 25 (in press).
- 2. Mitsek AI. Uspehi Fiz. Met. 2005; 6 (in press).