ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НОВЫХ СТРУКТУРНЫХ ФОРМ УГЛЕРОДА

Литвиненко В.Ф.

Институт проблем материаловедения НАН Украины, ул. Кржижановского 3, Киев, 03142, Украина; *E-mail: bas@materials.kiev.ua*

Открытые в конце XX века новые формы углерода (карбин, фуллерены, нанотрубки и др.) имеют уникальные свойства и перспективны для практического использования. Всесторонние исследования таких различных форм, образованных одним и тем же химическим элементом, способствуют развитию новых методов предсказания строения и свойств твердого тела. Актуальность и важность знания фундаментальных термодинамических свойств таких веществ трудно переоценить.

В настоящей работе на основе анализа литературных данных о калориметрических исследованиях фуллеренов C_{60} , C_{70} в твердом и газовом состояниях а также полимерных форм C_{60} и линейного полимера углерода — карбина отобраны наиболее достоверные значения термодинамических свойств и рассчитаны в виде полиномов их основные термодинамические функции при температурах выше 298 К. Обсуждены особенности температурных зависимостей теплоемкости и других свойств указанных форм углерода.

Термодинамические свойства фуллеренов C_{60} и C_{70} интенсивно исследуются с 90-х годов, когда был разработан метод получения и выделения отдельных фуллеренов в количествах достаточных для различных исследований, в том числе и калориметрических. Получение и идентификация химически чистых, структурно однородных, однофазных препаратов остается важной задачей определения надежных термодинамических данных. Косвенными признаками чистоты калориметрических образцов являются характеристики фазовых переходов и количество остатка после сублимации. Среди методов калориметрии наиболее точным считаетадиабатический (ошибки измерения C_p 1,5 – 3 % при гелиевых, 0,2 – 0,4 % при азотных и комнатных температурах). Теплоемкость вещества в газовом состоянии находят с большой точностью расчетными методами на основе спектроскопических данных.

Обобщение исследований термодинамических свойств фуллеренов до 1998-1999 г. и соответствующая литература имеется в обзорах [1,2]. Теплоемкость образцов твердого фуллерена (фуллерита) C_{60} исследовалась в ин-

тервале $0.5-800~\rm K$ многими, результаты в основном приведены в виде графиков. Значение $C_p(T)$ удовлетворительно согласуются вдали от температур фазовых переходов во всех работах, за исключением одной — двух. На зависимости $C_p(T)$ (рис.1) довольно четко проявляются 3 модификации C_{60} : стеклоподобная фаза при $T<86.0~\rm K$, простая кубическая при $86.0~\rm K < T < 260.7~\rm K$, гранецентрированая кубическая при $T>260.7~\rm K$. Температуры и энтальпии переходов фуллерена C_{60} , а также C_{70} , значительно отличаются в разных работах.


Исследования теплоемкости твердого фуллерена C_{70} проводились менее широко (\sim 10 работ). На фазовое состояние C_{70} сильно влияют процедуры получения, очищения, хранения. Температурные интервалы переходов в C_{70} и их энтальпии значительно отличаются в разных работах, что связано с чистотой образцов и полиморфизмом C_{70} .

Энтальпии образования твердых фуллеренов C_{60} и C_{70} получены из калориметрически измеренных энтальпий сжигания образцов в кислороде.

Термодинамические свойства C_{60} и C_{70} в состоянии идеального газа рассчитаны в [1] методом статистической термодинамики, используя наборы нормальных колебаний атомов в молекулах C_{60} , C_{70} и вклады поступательного и вращательного движений молекул. В случае C_{60} учитывался еще вклад возбужденных электронных состояний.

Под действием давлений до 10 ГПа и температур до 1000 К кристаллический фуллерен полимеризуется, образуются различные структуры: димерная (кубическая) (C_{60})₂, квазиодномерная 1D (ромбическая), квазидвомерные 2D (ромбоэдрическая и тетрагональная). Теплоемкость полимерных форм C_{60} исследовали в единичных работах в интервале 4-350 К . С ростом температуры теплоемкость исследованных полимерных форм плавно увеличивается, фазовые переходы отсутствуют. При температурах выше 298 К теплоемкости твердых фуллеренов C_{60} , его полимерных форм, C_{70} и графита становятся довольно близкими (рис.1).

Теплоемкость в интервале 80-300 K и стандартную энтальпию образования карбина исследовали на партиях из 9 и 4 образцов неоднофазных и недостаточно полно аттестованных. Основываясь на критериях, недостаточно строго обоснованных, было отдано предпочтение значениям, полученным на одном образце в каждом исследовании: высшим по теплоемкости и низшим по энтальпии образования.

Рис.1.Теплоемкости различных фуллеренов и графита.

(Таблица) для C_{60} и C_{70} в кристалличе ском и газовом состояниях и полимерных форм (C_{60})₂, $1D-C_{60}$, $2D_R-C_{60}$ (ромбо эдрическая структура) и $2D_T-C_{60}$ (тетрагональная структура).

Знания теплоемкости, других физических свойств рассматриваемых фуллеренов позволяют углубить понимание энергетического спектра, микродинамики этих веществ. В твердом C_{60} низкоэнергетические моды, связанные с междумолекулярными взаимодействиями, и высокоэнергетические моды, обусловленные внутримолекулярными взаимодействиями заметно разделены. В твердом C_{70} соответствующие полосы смыкаются.

При повышении температуры выше $100~\mathrm{K}$ наблюдается интенсивное увеличение теплоемкости, вызванное в основном заполнением высокоэнергетических фононных уровней, связанных с колебаниями атомов углерода в молекулах фуллерена. Промежутки $C_p(T)$ с почти линейными зависимостями указывают на существование соответствующих участков с равной плотностью состояний в фононном спектре.

Таблица

Коэффициенты приведенной энергии Гиббса $\Phi^*(T)$,теплоемкости (Дж/(моль.К)) фуллеренов: $\Phi^*(T) = \phi_1 + \phi_2 \ln x + \phi_3 \ x^{\text{-}2} + \phi_4 \ x^{\text{-}1} + \phi_5 \ x + \phi_6 \ x^2 + \phi_7 \ x^3,$ $C_p(T) = \phi_2 \ + 2\phi_3 \ x^{\text{-}2} + \ 2\phi_5 \ x \ + 6\phi_6 \ x^2 + 12\phi_7 \ x^3,$ где $x = 10^{\text{-}4} \ T.$

Фулле- рен	Т, К	ϕ_1	ϕ_2	φ ₃	φ ₄	φ ₅	φ ₆	φ ₇
С ₆₀ (к)	298-600	5598,28	1674,5	-0,175649	39,3415	-27464	204635	-652963
	600-1000	-1793,93	-437,384	-0,28719	-3,14596	21081,7	-61240	98516,5
C ₆₀ (г)	298-1000	-1743,44	-475,772	0,006235	-477942	20919,2	-59399	92981
	1000-5000	3399,63	1433,12	-0,960144	88,1514	111,93	-68,337	46,6893
C ₇₀ (к)	298-340	-15154,8	-4200,36	0,262944	-76,3869	108413	-418855	12372,1
	340-400	2103,64	883,251	-0,216472	37,2669	530,95	-45053	39589
	400-1000	1642,43	741,637	-0,301307	38,7989	6627,83	-8410,3	0
	1000-6000	3736,68	1502,33	0	59,3839	0	0	0
C ₇₀ (г)	298-1000	-504,372	-135,451	0,001298	-1,30484	5952,34	-17098	27019
	1000-5000	931,782	392,606	-0,24947	23,6663	68,531	-54,645	22,325
$(C_{60})_2(\kappa)$	298-340	-511581	-133739	6,18689	-2034	4393610	-3590.10 ⁴	1568.10 ⁵
1D-C ₆₀	298-350	-121582	-31526,5	1,36476	-464,334	1068110	-88647	3950.10 ⁴
$2D_{T}-C_{60}$	298-340	279895	73035,9	-3,31639	1102,4	-24132	2005.10 ⁴	8839.10 ⁴
$2D_{R}-C_{60}$	298-350	51034,5	13143,2	-0,54017	188,64	-456831	4116390	-1926.10 ⁴

Полученная отрицательная величина энталпии образования карбина указывает, что он термодинамически более устойчив чем графит. Нам неизвестны другие подтверджения этого вывода. Термодинамические свойства карбина нуждаются в последующих исследованиях.

На основе наиболее достоверных значений стандартных энтропии, энтальпии, теплоемкости и теплоемкостей при температурах выше 298 К найдено аналитическое представление приведенной энергии Гиббса и других взаимосвязанных термодинамических функций.

Литература

- 1. Дикий В.В., Кабо Г.Я. Термодинамические свойства фуллеренов C_{60} и C_{70} // Успехи химии 2000. 69, №2. С.107-117.
- 2. Лебедев Б.В. Термодинамические свойства фуллеренов и их производных // Ж. физ. химии. 2001. 75, №5. С.775–793.