ГЕТЕРОМЕТАЛЛИЧЕСКИЕ ФУЛЛЕРИДЫ НА ОСНОВЕ ЩЕЛОЧНЫХ МЕТАЛЛОВ И НЕПЕРЕХОДНЫХ МЕТАЛЛОВ 2^{ii} , 12^{ii} и 13^{ii} ГРУПП

Булычев Б.М., Кульбачинский В.А., Кречетов А.В., Кытин В.Г., Лунин Р.А.

Московский Государственный Университет им. М.В. Ломоносова, 119992, ГСП-2, Москва, Россия

Fax: +7(095)932-8876, E-mail: kulb@mig.phys.msu.ru

Введение

В ранних работах [1,2] нами показано, что обменные реакции тетра- и пентафуллеридов калия и рубидия M_nC_{60} (n=4,5) с рядом галогенидов переходных *d* и *f*-элементов (M') в среде органического растворителя донорного типа (обычно ТГФ) приводит к получению гетеро-сверхпроводников состава М2М'С60 с температурами перехода 16.5 К для М=К и 22 К для M=Rb. При этом обнаружено, что сверхпроводящими свойствами фуллериды, в которых на молекулу C_{60} формально перенесено не более 5 электронов, атомы **f**-элементов имеют полностью заполненную f-оболочку, а атомы d-элементов, напротив, нарушенный d-блок.

До настоящего времени оставалось неясным, будут ли обладать сверхпроводящими свойствами гетерофуллериды непереходных металлов (помимо щелочных) и если да, то для каких элементов и каков будет их состав.

Результаты и обсуждение

Результаты изучения продуктов реакций 1-5, четыре из которых (1, 3-5) относятся к обменным и проводятся в ТГФ при температуре t > 70 °C, а одна (2) — к реакциям разложения и проводится в толуоле при t > 110 °C, представлены в таблице.

$$M_5C_{60} + M'Cl_3 \rightarrow M_2M'C_{60} + 3MCl$$
 (1)

$$K_2C_{60} + AlH_3 \rightarrow \{K_2AlC_{60}\} + 3/2H_2$$
 (2)

$$M_4C_{60} + M'Cl_2 \rightarrow M_2M'C_{60} + 2MCl$$
 (3)

$$K_3C_{60} + TlCl \rightarrow \{K_2TlC_{60}\} + KCl$$
 (4)

$$K_5C_{60} + 5BeCl_2 \rightarrow \text{``}\{[5BeClC_{60}] + 5KCl\}^* + 5K\text{''} \rightarrow \text{``Be}_5C_{60}\text{''} + 10KCl$$
 (5)

Появление на дифрактограммах хлорида щелочного металла и исчезновение отражений от гидрида алюминия указывает на протекание обменных реакций и реакции разложения. В то же время в рентгеновских спектрах и спектрах С₁₃ ЯМР за исключением спектров, относящихся к реакции фуллеридов с ZnC₁₂, отсутствуют полосы фуллерита, т.е. после взаимодействия весь С60 находится в связанном состоянии. Как видно из таблицы, сверхпроводящие свойства наблюдаются только у гетерофуллеридов непереходных металлов состава М2М'С₆₀, не содержащих в электронной структуре завершенной оболочки d_{10} . Но имеются и неожиданные исключения – гетеро-фуллерид с участием атома кальция (9), для которого отмечены лишь очень слабые сверхпроводящие свойства, единственный в ряду гетерофуллеридов переходных и непереходных металлов состава KMg_2C_{60} (4) с температурой Tc=15.5 K, несверхпро-водящие монофуллерид "Ва₄С₆₀" (13) и гетерофуллериды $M2M'C_{60}$ (16,17) на основе рубидия и цезия. Если для гетерофуллеридов Cs₂M'C₆₀ этот факт может быть объяснен теми же причинами, что и для Cs₃C₆₀ (изменением структуры), то в случае Rb₂M'C₆₀, как и в случае "Ва₄С₆₀", имеющего по литературным данным Тс=8 К, он остается необъясненным. Появление сверхпроводящего перехода у состава исходной смеси $\{K_6C_{60}+3TlCl\}$ вызвано разрушением фуллерида К₆С₆₀ и образованием K_3C_{60} , с $T_c=17$ К (по литературным данным 18K).

Таким образом, как и у d-металлов, наличие заполненного d-блока у непереходных или постпереходных гетерометаллов подавляет сверхпроводящие свойства фуллеридов.

Составы и некоторые свойства изученных гетерофуллеридов приведены в таблице

	Состав исходной	Предпола-		Цвет	Электронная	ЯМР
N	смеси	гаемый	Тс, К	вещества	конфигурация	¹³ C,
		состав			гетеро-атома	ppm
1	$K_4C_{60}+BeCl_2$	K_2BeC_{60}	13	шаровый	$1s^{2}2s^{2}$	-
2	K ₅ C ₆₀ +2BeCl ₂	KBe_2C_{60}	-	черный	$1s^22s^2$	187
3	$K_4C_{60}+MgCl_2$	K_2MgC_{60}	16	черный	$2s^{2}2p^{6}3s^{2}$	191
4	$K_5C_{60}+2MgCl_2$	KMg_2C_{60}	15.5	черно-кор.	$2s^{2}2p^{6}3s^{2}$	191
5	$Rb_4C_{60}+MgCl_2$	Rb_2MgC_{60}	-	черный	$2s^{2}2p^{6}3s^{2}$	183 ш
6	Cs ₄ C ₆₀ +MgCl ₂	Cs_2MgC_{60}	-	_	$2s^22p^63s^2$	183 ш
7	K ₄ C ₆₀ +ZnCl ₂	K_2ZnC_{60}		HODIH IĞ	$3p^63d^{10}4s^2$	190,
/	K4C60+Z11C12	K2ZIIC60	-	черный	5p 3u 48	145
8	K ₅ C ₆₀ +2ZnCl ₂	KZn_2C_{60}	-	черный	$3p^63d^{10}4s^2$	190,
						145
9	K ₄ C ₆₀ +CaCl ₂	K_2CaC_{60}	О.сл	черный	$3s^23p^63s^2$	188
10	K ₅ C ₆₀ +2CaCl ₂	KCa_2C_{60}	-	черный	$3s^23p^64s^2$	187
11	K ₄ C ₆₀ +BaCl ₂	K ₂ BaC ₆₀	О.о.сл.	черный	$4d^{10}5s^25p^66s^2$	188
12	$K_5C_{60}+2BaCl_2$	KBa_2C_{60}	-	черный	$4d^{10}5s^25p^66s^2$	185
13	$\{K_6C_{60}$	"Ba ₄ C ₆₀ "	-	черный	$4d^{10}5s^25p^66s^2$	_
	$+4BaCl_2$ } $+2K$					
14	K ₅ C ₆₀ +AlCl ₃	K_2AlC_{60}	14.5	черно-кор.	$2p^63s^23p^1$	191
15	$K_2C_{60}+AlH_3$	K_2AlC_{60}	13.0	черный	$2p^63s^23p^1$	185,141
16	Rb ₅ C ₆₀ +AlCl ₃	Rb_2AlC_{60}	О.сл	черный	$2p^63s^23p^1$	182
17	Cs ₅ C ₆₀ +AlCl ₃	Cs_2AlC_{60}	-	корчерн.	$2p^63s^23p^1$	183
						О.Ш.
18	K ₇ C ₆₀ +2AlCl ₃	KAl_2C_{60}	О.о.сл.	рыжий	$2p^63s^23p^1$	190,
10	K7C60+2AIC13	KA12C60	O.0.C.1.	рыжии	2p 38 3p	145
19	K ₅ C ₆₀ +GaCl ₃	K ₂ GaC ₆₀	-	черный	$3d^{10}4s^24p^1$	191,
						145
20	K ₃ C ₆₀ +TlCl	K ₂ TlC ₆₀	-	черный	$5d^{10}6s^26p^1$	187,144
21	$K_6C_{60} + 3TIC1$	"K ₃ C ₆₀ +3Tl"	17	черный	$5d^{10}6s^26p^1$	191

Вполне, однако, очевидно, что существуют и другие факторы, влияющие на это свойство, например, протекание реакций по совершенно иным направлениям, чем это предусмотрено уравнениями 1-5. Эти изменения сопровождаются разрушением фуллеридов и образованием смеси продуктов, в том числе и фуллерита (141-144 ppm).

Работа поддержана грантами РФФИ № 05-02-17368а и № 05-03-32218а.

Литература

- Булычев Б.М, Лунин Р.А.,
 Кульбачинский В.А., Шпанченко Р.В.,
 Привалов В.И., Известия АН,
 сер. химич. 2004, №8, 1623.
- 2.Bulychev B.M., Lunin R.A., Krechetov A.V., Kulbachinskii V.A., Kytin V.G., Poholok K.V., Lips K., Rappich J., J. Phys. and Chem. Solids, 2004, v. 65, 337.