HETEROMETALLIC FULLERIDES OF ALKALI METALS AND NONTRANSITION METALS OF 2nd, 12th AND 13th GROUPS

Bulychev B.M., Kulbachinskii V.A., Krechetov A.V., Kytin V.G., Lunin R.A. Moscow State University (M.V. Lomonosov), 119992, GSP-2, Moscow, Russia Fax:+7(095)932-8876, E-mail: kulb@mig.phys.msu.ru

Introduction

In Ref. [1,2] we have shown that exchange reactions of tetra- and penta-fullerides of potassium and rubidium нами M_nC_{60} (n=4, 5) with halogenides of transition d- and f-elements (M') in the organic solvent of donor type (usually TGF) leads to the synthesis of heterosuperconductors with composition M₂M'C₆₀ with transition temperature T_c=16.5 K for M=K and T_c=22 K for It was found that fullerides superconducting if the number of transferred electrons to the molecule of C₆₀ is not higher than 5, atoms of f-elements have filled d-shell, while atoms of *d*-elements in opposite, not-filled *d*-shell.

Up to now it is not clear would be heterofullerides of nontransition metals possess superconducting properties (except alkali metals) and if yes, for what especially elements with what composition.

Results and discussion

The results of some reactions (1-5) are listed in table. Four of reactions are exchange reactions (1, 3-5) were carried out in TGF at t>70 °C, and one (2) is a reaction of decomposition in toluol at t>110 °C.

$$M_5C_{60} + M'Cl_3 \rightarrow M_2M'C_{60} + 3MCl$$
 (1)

$$K_2C_{60} + AlH_3 \rightarrow \{K_2AlC_{60}\} + 3/2H_2$$
 (2)

$$M_4C_{60} + M'Cl_2 \rightarrow M_2M'C_{60} + 2MCl$$
 (3)

$$K_3C_{60} + TlCl \rightarrow \{K_2TlC_{60}\} + KCl$$
 (4)

$$K_5C_{60}$$
 + 5BeCl₂ \rightarrow "{[5BeClC₆₀] + 5KCl}*+5K" \rightarrow "Be₅C₆₀" + 10KCl (5)

Metal chloride was detected defractogramm while hydride of aluminum disappeared. These facts confirm the execution of exchange reaction and reaction of decomposition. Simultaneously in X-ray spectra and NMR spectra of C¹³ AMP (except spectrum of fulleride with ZnCl₂) the band of fullerite was not found, that is all C_{60} is in bound state after execution of reaction. As it is seen in the table superconducting have been observed properties only heterofullerides of nontrasition metals with composition M₂M'C₆₀, in which electronic configuration there is not filled d¹⁰-shell. There is some exceptions: the heterofulleride of calcium with very weak superconductivity is the only between transition and nontransition metals heterofulleride with composition KMg₂C₆₀ with T_c=15.5 K, nonsuperconducting fulleride "Ba₄C₆₀" and heterofullerides M2M'C₆₀ based on rubidium and cesium. For heterofullerides Cs₂M'C₆₀ the absence of superconductivity is explained by changing of the structure as for Cs₃C₆₀. In the case of "Ba₄C₆₀" with T_c=8 K (according to publications) there is no explanations of superconductivity. Superconductivity in {K6+3TlC1} is due to decomposition of fulleride K₆C₆₀ and appearance of K_3C_{60} with $T_c=17$ K (published $T_c=18$ K).

Table Composition and some properties of synthesized heterofullerides

N	Composition of the initial components	Assumed composition of the fulleride	Т _с , К	Colour	Electron configuration of heteroatom	NMR ¹³ C,
1	K ₄ C ₆₀ +BeCl ₂	K ₂ BeC ₆₀	13	Steel-blue	$1s^22s^2$	ppm
2	K ₄ C ₆₀ +BeCl ₂ K ₅ C ₆₀ +2BeCl ₂	K ₂ BeC ₆₀ KBe ₂ C ₆₀	13	Black	$1s^2 2s^2$ $1s^2 2s^2$	187
3	$K_4C_{60}+MgCl_2$	K_2MgC_{60}	16	Black	$2s^22p^63s^2$	191
4	$K_5C_{60}+2MgCl_2$	KMg_2C_{60}	15.5	Black – brown	$2s^22p^63s^2$	191
5	Rb ₄ C ₆₀ +MgCl ₂	Rb ₂ MgC ₆₀	-	Black	$2s^22p^63s^2$	183 wide
6	$Cs_4C_{60}+MgCl_2$	Cs ₂ MgC ₆₀	-		$2s^22p^63s^2$	183 wide
7	$K_4C_{60}+ZnCl_2$	K ₂ ZnC ₆₀	-	Black	$3p^63d^{10}4s^2$	190, 145
8	$K_5C_{60}+2ZnCl_2$	KZn ₂ C ₆₀	-	Black	$3p^63d^{10}4s^2$	190, 145
9	K ₄ C ₆₀ +CaCl ₂	K ₂ CaC ₆₀	Very weak	Black	$3s^23p^63s^2$	188
10	$K_5C_{60}+2CaCl_2$	KCa_2C_{60}	-	Black	$3s^23p^64s^2$	187
11	K ₄ C ₆₀ +BaCl ₂	K ₂ BaC ₆₀	Very weak	Black	$4d^{10}5s^25p^66s^2$	188
12	$K_5C_{60}+2BaCl_2$	KBa_2C_{60}	-	Black	$4d^{10}5s^25p^66s^2$	185
13	$ \begin{array}{l} \{ K_6 C_{60} \!\!+\!\! 4BaCl_2 \} \\ +\!\! 2K \end{array} $	"Ba ₄ C ₆₀ "	-	Black	$4d^{10}5s^25p^66s^2$	_
14	K ₅ C ₆₀ +AlCl ₃	K ₂ AlC ₆₀	14.5	Black- brown	$2p^63s^23p^1$	191
15	$K_2C_{60}+AlH_3$	K_2AlC_{60}	13.0	Black	$2p_{6}^{6}3s_{2}^{2}3p_{1}^{1}$	185,141
16	$Rb_5C_{60}+AlCl_3$	Rb_2AlC_{60}	Weak	Black	$2p^63s^23p^1$	182
17	Cs ₅ C ₆₀ +AlCl ₃	Cs ₂ AlC ₆₀	-	Black- brown	$2p^63s^23p^1$	183 wide
18	K ₇ C ₆₀ +2AlCl ₃	KAl ₂ C ₆₀	Very weak	Red	$2p^63s^23p^1$	190, 145
19	K ₅ C ₆₀ +GaCl ₃	K2GaC60	-	Black	$3d^{10}4s^24p^1$	191, 145
20	K ₃ C ₆₀ +TlCl	K ₂ TlC ₆₀	-	Black	$5d_{10}^{10}6s_{2}^{2}6p_{1}^{1}$	187,144
21	$K_6C_{60}+3TIC1$	"K ₃ C ₆₀ +3Tl"	17	Black	$5d^{10}6s^26p^1$	191

fully filled Thus the d-shell nontransition and pasttransition metals suppressed the superconductivity in fullerides as it is in dmetals fullerides. Nevertheless it is evident that other factors also influence some superconductivity, for example the different execution of reaction, not in the way shown in equations (1-5). In such way the fulleride may be decomposed and the products of reaction will be a mixture of different substances including fullerite (the line in NMR spectra 141-144 ppm).

The work was supported by RFBR, grant № 05-02-17368-a

References

- 1.Bulychev B.M., Lunin R.A., Kulbachinskii V.A., Shpanchenko R.V., Privalov V.I., Izvestiya AN, ser. khimich. 2004, №8, 1623.
- 2.Bulychev B.M., Lunin R.A., Krechetov A.V., Kulbachinskii V.A., Kytin V.G., Poholok K.V. Lips K., Rappich J., J.Phys. and Chem.Solids, 2004, v. 65, 337.