ЭЛЕКТРОННОЕ СТРОЕНИЕ И СВОЙСТВА УГЛЕРОДНЫХ НАНОТРУБОК

<u>Нищенко М.М.</u>,* Лихторович С.П., Лисунова Ю.А.

Институт металофизики им. Г.В.Курдюмова НАН Украины, ул. Вернадского 36, Киев-142, 03142 Украина * E-mail: nish@imp.kiev.ua

Введение

Интерес к изучению углеродных нанотрубок (УНТ) обусловлен их высокими электрическими, адсорбционными, эмиссионными и прочностными характеристиками Нанотрубки в десятки раз прочнее стали и в 6 раз легче, электрический ток проводят лучше, чем медь, а тепло - лучше, чем алмаз, характеризуются наличием запрещённой зоны (0-2 эВ). Её ширина зависит от атомного строения: диаметра, индексов хиральности и наличия в гексагональной сетке дефек тов. Например, при появлении в одно слойной **УНТ** только одного дефекта "пятиугольник-семиугольник" (дефект Стоуна-Велса) происходит перегиб нанотрубки и образование гетероперехода металл-полупроводник. Привлекательность свойств углеродных нанотрубок обусловлена уникальной анизотропной структурой, которая имеет форму свёрнутого в цилиндр или спираль каркаса из ковалентно связанных атомов углерода в состоянии гибридизации. Многослойные sp2характеризуются большими межслоевыми расстояниями d (002) и слабыми ван-дерваальсовыми связями между слоями. Они технологией определяются получения влияют на их свойства.

Результаты и обсуждение

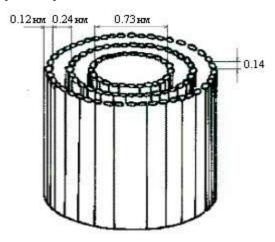
Методы электрофизической и электроннопозитронной аннигиляции чувствительны к внутренней структуре и дефектам строения УНТ. Исследованы многослойные нанотрубки: спиралевидные и прямые тонкостенные, полученные электродуговым и матричным методами соответственно [2]. Прямые УНТ, в отличие от спиралевидных, растут внутри полости нанопоры диаметром 40-60 нм. В результате образуется в среднем 10 цилиндрических слоёв с внутренним диаметром 30-50 нм. спектры углового распределе Получены ния аннигиляционных фотонов (УРАФ), представляющие собой распределение электронов по импульсам.

Показано, что в нанотрубках позитроны выталкиваются полем положительных ядер

углерода в свободный объём — промежутки между слоями (ван-дер-ваальсовы) или захватываются дефектами. Установлено, что спектры УРАФ многослойных нанотрубок удовлетворительно аппроксимируются двумя гауссианами, вклад в которые дают позитроны, аннигилирующие с π -электронами в межслоевых промежутках и с электронами ненасыщенных ковалентных σ -связей в области дефектов строения гексагональных слоёв.

По данным распределения электронов по импульсам определены степень локализации электронов в области свободного объёма и дефектах, вероятность аннигиляции электронов с позитронами в дефектах, размеры межатомных и межслоевых промежутков, которые определяют электронную структуру и электронные свойства УНТ. Результаты расчета спектров УРАФ углеродных мате-

риалов приведены в таблице


риалов приведены в таолице		
	Радиус локализации	Доля позитро-
	волновой функции	нов, анниги-
Образец	π-электронов между	лирующая в
	углеродными сло-	дефектах,
	ями, (±0,001 нм)	%
Эталоны:		
1. Фуллериты	0,121	22
(C ₆₀ в ГЦК-		
решётке)		
2. Графит	0,112	18
Нанотрубки:		
3. Спирале-	0,109	10
видные (ду-		
говой метод)		
4. Прямые	0,116	2
тонкостен-		
ные (матрич-		
ный метод)		

В спектрах УРАФ отсутствует параболическая компонента, ответственная за аннигиляцию со свободными электронами. Для составляющих импульса выполняется условие: $P_r >> P\ell >> P_z$, при котором π -электронные состояния делокализованы на всю длину нанотрубки (z), в меньшей степени - по кругу радиуса R (ℓ =2 π R), и локализованы в радиальном направлении (r). Это означает,

что электронная подсистема нанотрубок не является полностью делокализованной, как в a образует двумерный электронный газ, который отличается от трёхмерного более высокой подвижностью носителей заряда. Наибольший радиус локализации волновой функции π-электронов направлении квантования энергии электронов наблюдается для тонкостенных нанотрубок L_r=0,116 нм. Среднее межслоевое расстояние в них по данным электроннопозитронной аннигиляции составляет 0,355 нм, что на 0,020 нм больше межплоскостного расстояния в графите.

Радиус локализации волновой функции электрона в области дефекта для тонкостенных и сплошных нанотрубок практически одинаково (r_{m2} , = 0,05 нм), что указывает на близкие характеристики дефектов. Однако вероятности аннигиляции позитронов с электронами в области указанных дефектов S отличаются: в нанотрубках спиралевидной формы — 10 %, а в прямых тонкостенных нанотрубках — 2 %. Уменьшение этой величины уменьшает рассеивание электронов на дефектах, что необходимо для увеличения электропроводности.

Построена модель УНТ, согласно которой между углеродными слоями образуется "цилиндрическая" квантовая яма шириной 0,23 нм для π -электронов. Она захватывает положительно заряженные частицы: позитроны, протоны и катионы.

При замыкании графитового слоя в цилиндр появляются внутренние напряжения, увеличивающие межслоевые расстояния и влияющие на физические свойства УНТ. Получено выражение для оценки величины прироста Δr межслоевого расстояния d (002) при росте УНТ внутри полости по сравнению с квази-равновесным значением d_{002} для случая роста каркаса по спирали:

$$\Delta \mathbf{r} = \sqrt{\frac{2d_{002} \cdot E}{N \cdot \kappa}} \ .$$

Отсюда следует, что с уменьшением диаметра нанотрубок уменьшается число атомов N в цепочке и возрастает величина Δr .. Последняя обусловливает увеличение внутренних напряжений.

Для нанотрубок с внешним радиусом 22 нм число атомов в квазиодномерной цепочке N \approx 2300 и при $\overline{E_{_{KOB}}} \approx$ 5 эВ прирост $\Delta r \approx 0.015 \,\text{нм}$, что близко к значению, данным полученному позитронной ПО аннигиляции (0,020 нм). Следует ожидать, что незначительное увеличение d(002) в УНТ и появление внутренних напряжений приведёт к уменьшению степени перекрытия волновых функций π-электронов, слабо связанных со своими атомами, к изменению параметров электронной структуры И уменьшению электропроводности, особенно, для многослойных нанотрубок малого диаметра. Заметим, что межслоевые расстояния и внутренние напряжения для нанотрубок, полученных матричным синтезом, оказываются больше, чем для нанотрубок, полученных электродуговым методом.

Показано, что температурный ход электросопротивления неориентированных УНТ и нанокомпозитов на их основе имеет полупроводниковый характер.

Выводы

Электронная подсистема тонкостенных нанотрубок не является полностью делокализованной как в металлах, а образуется двумерный электронный газ из π -электронов, характеризующихся более высокой подвижностью электронов по сравнению с трехмерным случаем.

Радиус локализации волновой функции π -электронов в радиальном направлении в нанотрубках, по данным позитронной аннигиляции, равен 0,116 нм, а ширина образуемой «цилиндрической» квантовой ямы для π - электронов – 0,24 нм.

Литература

- 1.Шпак А.П., Куницкий Ю.А., Карбовский В.Л. Кластерные и наноструктурные материалы. Київ: Академперіодика, 2001, с 587.
- 2. А. В. Бричка, Г. П. Приходько, С. Я. Бричка, В.М. Огенко, А. И. Сенкевич //Укр. Хим. Журн. 69, №8, с. 67-70 (2003)