ПРОВОДИМОСТЬ НАНОУГЛЕРОДНОГО МАТЕРИАЛА, СОДЕРЖАЩЕГО НАНОТРУБКИ

Овсиенко И.В. $^{(1)}$, <u>Лень Т.А.</u> $^{(1)}$, Мацуй Л.Ю. $^{(1)}$, Щур Д.В. $^{(2)}$, Прилуцкий Ю.И. $^{(3)}$, Эклунд П. $^{(4)}$

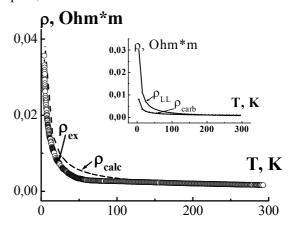
Киевский национальный университет имени Тараса Шевченко, физический⁽¹⁾ и биологический⁽³⁾ факультеты, ул. Владимирская 64, 01033 Киев, Украина ⁽²⁾Институт проблем материалознавства НАНУ, ул. Кржижановского 3, 03142 Киев, Украина ⁽⁴⁾Государственный университет Пенсильвании, 16802-6300, США

Введение

Как известно, наноуглеродный материал (НУМ) кроме углеродных нанотрубок (УНТ) может содержать в разных концентрациях частицы аморфного углерода, нанографита, а также частицы металла-катализатора.

В данной работе проводились исследования электросопротивления, НУМ различного структурно-фазового состава. Целью работы было выявление механизмов электропроводимости НУМ в зависимости от относительного содержания различных фаз.

Экспериментальные результаты

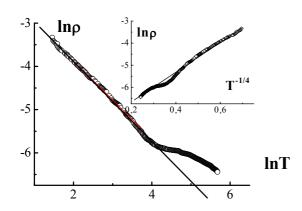

Для исследований электрофизических свойств использовался НУМ фирмы Carbonsolution марки AP-SWNT, полученный методом каталитического разложения.

Проведенный методами рентгеновской дифракции и электронной просвечивающей структурно-фазовый микроскопии показал, что исходный НУМ содержит жгуты УНТ диаметром (3-6) нм, частицы аморфного углерода с размерами (10-30) нм, а также незначительное количество частиц никеля. Исследование электросопротивления проводилось в температурном интервале от 4.2 стандартным четырехзондовым методом.

Для измерения электросопротивления были приготовлены объёмные образцы НУМ, получались метолом прессования без связующего агента (образец #1), с использованием в качестве связующего агента PVA (18% масс.) (образец #2). Для изменения относительного соотношения количества УНТ и аморфного углерода исходный НУМ также подвергался термо-химическому воздействию по схеме: трехкратное кипячение в 2.5 М растворе азотной кислоты в течение 2 часов с последующим отжигом на воздухе в течение 20 минут. Такое воздействие, как показали данные ТЭМ, приводило к существенному разрушению структуры УНТ и, как следствие, увеличению относительного содержания аморфной углерод-ной фазы, причем размеры

частиц аморфного углерода также уменьшались. Из такого же материала был приготовлен методом холодного прессования объемный образец со связующим агентом (18%масс.) PVA (образец #3).

На рис. 1 приведены температурные зависимости электросопротивления для трех образцов НУМ.


Рис. 1. Зависимости $\rho(T)$ для образцов НУМ разного структурно-фазового состава.

Как следует из представленного рисунка, образцов НУМ наблюдается всех одинаковый вид зависимости р(Т): резкое падение сопротивления при температуре до 50 К и далее слабая зависимость о от температуры. Однако различными являются значения р: для образца #1 при комнатной температуре $\rho_r \sim 5.10^{-4} \, \text{Ohm} \cdot \text{m}$, для образца #2 это значение составляет ~1.5·10⁻³ Ohm m. а для образца #3 $\rho_r \sim 4.10^{-2}$ Ohm·m. Существенно различным является и отношение $\rho_{4,2}/\rho_r$: для образца #3 оно составляет ~95, в то время как для образца #1 $\rho_4 2/\rho_r \sim 22$, а для образца #2 ~ 28 .

Обсуждение

Как уже указывалось выше, НУМ содержит несколько структурно различных фаз, каждая из которых характеризуется своим типом проводимости. УНТ представляют собой взаимодействующие 1D системы, для которых электронные свойства, в частности электро-

проводность, описываются в рамках теории Luttinger liquid с видом температурной зависимости $\rho \sim a T^{-\alpha}$, где показатель степени α связан с Luttinger параметром выражением: g $\alpha = (g + g^{-1} - 2)/8$. Кроме того, соединения трубок имеют металлический характер проводимости. Аморфный углерод характеризуется прыжковой проводимостью с переменной длиной прыжка, для которой сопротивление в трехмерном случае описывается формулой: вида $\rho = \rho_0 \exp(T_0/T)^{1/4}$, где T_0 и ρ_0 const. Для описания электрофизических свойств углеродного материала, имеющего участки с металлической и прыжковой проводимостью, нами была предложена модель последовательного соединения участков с различным типом проводимости [1]. Похожие модели электропроводрассматривались В ряде например [2], в которых изучалась проводимость матов УНТ. Рассмотрим полученные эксперименталь-ные данные $\rho(T)$ для образцов НУМ в рамках модели [1]. На рис. 2 приведена зависимость $\rho(T)$ для образца #1 в координатах lno=f(lnT) и $lno=f(T^{-1/4})$.


Рис. 2. Зависимость $\rho(T)$ для образца #1 в координатах $\ln \rho = f(\ln T)$ и $\ln \rho = f(T^{-1/4})$ (вставка).

Как видно из рисунка, в представленных координатах в разных температурных интервалах наблюдается линейный вид зависимости $\rho(T)$. Из рисунка были определены значения констант a, α, ρ_0 и T_0 для всех образцов (Табл.1).

Табл. 1.

#	Прыжк. пров.		Luttinger liquid		
	ρ ₀ ,	T ₀ , K	α	g	a
	Ohm∙m				
#1	5.4·10 ⁻⁵	$7.4 \cdot 10^3$	0.98	0.103	0.05
#2	$2.9 \cdot 10^{-4}$	$2.7 \cdot 10^3$	0.90	0.110	0.1
#3	$7.0 \cdot 10^{-3}$	$8.9 \cdot 10^3$	0.88	0.112	0.5

С использованием полученных коэффициентов были рассчитаны температурные зависимости сопротивления для участков с различным типом проводимости в каждом из образцов (приведены на рис. 3 для образца #2). Эквивалентная схема НУМ представляет собой последовательно соединенные эффективные сопротивления, соответствующие углеродным фазам с различным типом проводимости. Таким образом, сопротивление НУМ можно записать в виде $\rho = \rho_0 \exp(T_0/T)^{1/4} + aT^{-\alpha}$. По этой формуле были рассчитаны теоретическая кривая $\rho(T)_{calc}$ (также представлены на рис. 3 для образца #2). Для лучшего совпадения рассчитанного сопротивления с измерянным экспериментально необходимо для низкоомных образцов #2 и #1 также учитывать сопротивление участков соединения трубок в виде ρ=b·T, где b имеет значение порядка величины сопротивления в чистом монокристаллическом графите.

Рис. 3. Рассчитанные зависимости $\rho_{LL}(T)$, $\rho_{carb}(T)$ (вставка) и суммарная $\rho = \rho_{LL}(T) + \rho_{carb}(T)$ для образца #2.

Выводы

Таким образом, предложенная модель проводимости НУМ, как последовательного соединения эффективных сопротивлений, соответствующих участкам с различным типом проводимости, удовлетворительно описывает экспериментальную зависимость $\rho_{carb}(T)$ в НУМ, содержащем УНТ.

Литература

- 1. Matzui L., Vovchenko L., Ovsieynko I. Low-temperature thermopower in quasiamorphous carbons. LTP 2000; 26(1): 51-55.
- 2. Kaiser A.B., Flanagan G.U., Stewart D.M. et al. Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synth. Met. 2001; 117: 67-73.