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Introduction 
The calculations in a majority of previous 

works for the fulleride (AqC60) crystals were per-
formed within the framework of the rigid-lattice 
model, neglecting the distortion relaxation of the 
host fullerite (C60) crystal caused by the interstitial 
impurity atoms (A—metal cations, hydrogen, oxy-
gen, rare-gas atoms, etc.). However, an each impu-
rity atom is a source of a static distortion field, and 
the resulting field is a superposition of all such 
fields generated by individual impurity atoms. This 
is a reason why the host-crystal distortions depend 
on the A-atoms’ configurations, i.e. on a type of a 
spatial bulk distribution of interstitial atoms. 

A given work seeks to find a functional rela-
tionship between the amplitudes of the doping-
induced structure-distortion waves and of the static 
concentration waves. A semiphenomenological 
model is constructed here within the scope of the 
statistical-thermodynamic treatment and using the 
lattice-statics simulation method [1, 2]. In this 
model, the effects caused by the presence of q sol-
ute A atoms over available interstices (per ‘primi-
tive’ unit cell) on the static inherent reorientations 
and/or displacements of the solvent C60-fullerene 
molecules from the ‘average’-lattice ‘sites’ as well 
as on the lattice parameter a of the elastically-
anisotropic ‘face-centred cubic’ C60 crystal (Fig. 1) 
are taken into account. 

The (indirect) ‘strain-induced’ interaction [1, 2] 
between the interstitial A atoms ‘by means of the 
host crystal’, as any dipole–dipole-like interaction, 
is highly directionally anisotropic and long-range. 
That is why the (macroscopic) total volume-
dependent energy of the single-crystallite AqC60 
fulleride becomes a functional of boundary condi-
tions, i.e. the shape and spatial-orientation variants 
of a product crystallite phase, and that modifies the 
Gibbs statistical thermodynamics of the marten-
sitic-like or constant-composition phase transfor-
mation of the C60 lattice upon a further doping by 
the A atoms from the pristine f.c.c. structure to the 
b.c.t. one within the experimentally-determined 
phases manifesting themselves in different proper-

ties for doing a conductivity, increasing a micro-
hardness, etc. By means of the proposed intersti-
tialcy model, it may be possible to overcome such 
an obstacle in the analytic thermodynamical treat-
ment of data from the integrated X-ray and elec-
tron diffraction, TEM, HREM, SEM, and AFM 
studies (see Refs. in [3]) of abnormalities caused 
by the A-atoms’ redistributions in the f.c.c.-
fullerite-derived AqC60 phase. Although such a 
phase is expected to be insulating at low doping 
levels (q  3), it is clear that an understanding the 
origin of this crystalline structure and its interplay 
with A-doped fullerides based on the b.c.t. fullerite 
(or on the low-temperature s.c. one) will have im-
portant consequences for an ongoing process of an 
unveiling the bulk high-Tc-superconductivity origin 
as well as the current-carrier pairing mechanism, 
the causes of twin formation and the factors of mi-
crohardness increase, etc., which are dependent on 
the spatial arrangement of A atoms. 
 

Results and discussion 
As a result of numerical analysis of the nonana-

lytic wave-vector-dependent Fourier components, 

E, ~AA(k), of spatial-dispersion energies, EAA(r), of 
the bulk-controlled ‘strain-induced’ interaction 

 
Fig. 1. Conventional ‘cubic’ unit cell of f.c.c. 
fullerite (polyhedrons        at the sites symbolize 
the C60 fullerenes). 
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between the octahedral A atoms within the scope of 
the quasi-harmonic approximation of the C60 crys-
tallite natural vibrations, the absolute minimum 
value of these quantities falls into the singular cen-
tral point  (k  0) of the f.c.c.-lattice first Brillouin 
zone and is equal to the (negative) total energy, 

E, ~AA(0), of the ‘strain-induced’ interaction (‘at-
traction’) between one chosen octahedral A atom 
and the rest of them within the nonstoichiometric 
intercalation crystalline AqC60 compound, if the 
intrinsic elastic moduli (in the Voigt designations) 
of the ‘pure’ C60 crystal are as follows: C11  22.7, 
C12  9.8, C44  12.3 (in GPa) [4], and its lattice 
parameter is a0  a(q  0)  1.404 nm [3, 4].  
Figure 2 shows the predicted arrangement of dis-

persion curves for E, ~AA(k) (in units of the square 
of concentration coefficient of the linear f.c.c.-C60-
lattice dilatation due to dissolving A atoms, L2) in 
symmetry directions in the first Brillouin zone. 

Besides, for instance, the values of the A–A 
‘pairwise’ ‘strain-induced’ interaction energy, 
EAA(rI), EAA(rII), …, EAA(rVI), for the 1st, 2nd, …, 
6th octahedral-interstitial co-ordination spheres 
with radii rI  a/2


, rII  a, , rVI  a3


 in a real 

space, respectively, are in the following ratio: 
28.3 : 8.0 : 8.6 : 1.3 : 5.6 : 2.3, i.e. such a ‘strain-
induced’ interaction energy has a substantially 
nonmonotonous (‘quasi-oscillating’) dependence 
on the interatomic distance rn (n  0, I, II, …; see 
Fig. 3). (If а  1.417, 1.414, 1.404, 1.400 nm, then 
rI  1.002, 1.000, 0.993, 0.990 nm and rII  1.417, 
1.414, 1.404, 1.400 nm, respectively.) 
 

Conclusions 
When no the fully-screened electrostatic (or 

weak Lennard-Jones-type) A–A interatomic interac-
tion exists, the absolute thermodynamical instability 
of a homogeneous solid solution of A atoms in C60 
crystal with respect to arbitrary (not infinitesimal) 
concentration fluctuations (‘heterogeneities’) may 
be considered as a precursor effect associated with 
the possible isostructural (not spinodal) decomposi-
tion reaction [5] in the A-atoms’ subsystem in view 
of the above-mentioned behaviour of the character-

istic function, E, ~AA(k), in the vicinity of reciprocal-
lattice point  (i.e. within the instability range in k-
space) [2]. (According to Ref. [5], at the early stage 
of spinodal decomposition, amplitudes of all con-
centration waves, whose wave vectors belong to the 

instability range about k  0, would be increased ex-
ponentially with time.) 
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Fig. 2. Dispersion curves, E, ~AA(k)/L2

 (k  0), for 
strain-induced’ A–A interaction between small at-
oms of an A impurity in their nonstoichiometric 
solution on octahedral interstices of the f.c.c. crys-
tal consisting of large spherical particles of radius, 
the much greater than typical atomic ones, with a 
lattice parameter and the elastic properties similar 
to a C60 fullerite [3, 4], and the concentration coef-
ficient of dilatation equal L at introduction of A 

atoms. ×—the value of E, ~AA(0)/L2. 

 
Fig. 3. 


