О ПОВЕДЕНИИ ФУЛЛЕРЕНА В СРЕДЕ АММИАКА ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ

Фокин В.Н.*, Шульга Ю.М., Фокина Э.Э., <u>Коробов И.И.</u>, Володин А.А., Бурлакова А.Г., Мурадян В.Е., Тарасов Б.П.

Институт проблем химической физики Российской академии наук, г. Черноголовка, Московская область, проспект академика Семенова, 1, Российская Федерация, 142432.

* Факс 7(096)5155420, E-mail: btarasov@icp.ac.ru

Введение

В последние годы большое развитие получила химия фуллеренов и углеродных нанотрубок. Значительное внимание уделяется исследованию взаимодействия этих материалов с водородом и другими веществами [1–2] с целью получения функционализированных углеродных материалов, которые обладали бы различными перспективными для использования в разных областях науки и техники свойствами.

В настоящей работе исследовано взаимодействие фуллерена с аммиаком при различных температурах. определена *<u>VCТОЙЧИВОСТЬ</u>* фуллерена в среде аммиака и найдены области температур, при которых происходят процессы образования фаз внедрения, гидроазотирования фуллерена и частичного разрушения фуллеререзультаты матрицы. Полученные найдут применение, в частности, в дальнейшем исследовании возможности открывания концов нанотрубок при использовании аммиака, так как известно, что нанотрубки, как правило, закрыты с обоих концов "половинками" молекулы фуллерена, что создает серьезные препятствия для проникновения различных веществ внутрь трубок.

Результаты и обсуждение

Для работы использовали кристалллический фуллерит C_{60} (чистота 99.8%, удельная поверхность $1 \text{ m}^2/\text{г}$), который, по данным рентгенофазового анализа, является однофазным и кристаллизуется в $\varepsilon u \kappa$ решетке с параметром a=14.16 Å.

Взаимодействие фуллерита или приготовленной смеси фуллерита с хлоридом аммония (как промотором взаимодействия) с аммиаком проводили под начальным давлением аммиака 0.6–0.7 МПа в интервале температур 150–500°С в лабораторной установке высокого давления емкостью 60 мл.

Найдено, что взаимодействие фуллерена с аммиаком при 150°C, по данным химического и рентгенофазового анализов, практически не происходит.

Дальнейшими исследованиями установлено, что при нагревании до 450°C фуллерен относительно устойчив в среде аммиака: в этих условиях, независимо от присутствия или отсутствия NH₄Cl, кристаллическая структура фуллерита сохраняется, но с повышением происходит температуры постепенное накопление в ней атомов водорода (≤ 2 мас. %) (≤ 1 mac. %), что приводит азота образованию гидридо-нитридных внедрения состава $C_{60}H_xN_v$. В отсутствие NH_4Cl максимальный состав $C_{60}H_4N_{0.4}$ (a = 14.72 Å) получен при 450°C. Присутствие хлорида аммония способствует более быстрому проникновению в матрицу фуллерита атомов водорода и азота уже при 200°C, а максимальный состав фазы внедрения, достигнутый при 450° С, соответствует $C_{60}H_8N_{0.6}$. При этом по данным рентгенофазового анализа с ростом взаимодействия параметр температуры решетки, как правило, не претерпевает значительных изменений и остается в пределах 14.15–14.23 Å.

Одним из подтверждений сохранения каркаса фуллерена в среде аммиака при температуре до 450° С является тот факт, что масс-спектрометрический анализ газовой фазы, образующейся при этих температурах взаимодействия фуллерена с NH_3 , показал, что она помимо аммиака содержит только молекулы N_2 и H_2 .

В ИК спектрах образцов, обработанных аммиаком при 450° С и ниже, можно видеть полосы поглощения, обусловленные фулереном и NH₄Cl. При температуре обработки 450° С появляется полоса поглощения при $2900~\text{сm}^{-1}$, которая относится к валентным колебаниям связи C—H.

Эффективность предложенной методики отмывки образцов от хлорида аммония спиртом (дважды) показана на примере образца, полученного при 250°С: после обработки спиртом содержание хлора в образце уменьшилось с 4.1 до 0.2 мас. %, азота – с 2.8 до 0.9 мас. %, водорода – с 1.4 до 1.1 мас. %. Вакуумирование образца, полученного при

 400° С, в течение 1 ч при 350° С привело к снижению содержания хлора в образце с 1.6 до 0.1 мас. %.

Гидроазотирование фуллерена при 500 °C приводит к разложению фуллеритового каркаса, независимо от присутствия в исходной смеси NH_4Cl , и образованию рентгеноаморфного продукта, не содержащего, по данным химического анализа, азота и имеющего брутто-состав $C_{60}H_{10}$.

Эксперименты, проведенные при температуре $450\,^{\circ}\mathrm{C}$ для выяснения влияния циклирования на процесс взаимодействия фуллерита с аммиаком, показали, что уже после проведения двух циклов кристаллическая решетка фуллерита расширяется ($a=14.19\,\mathrm{\AA}$), после проведения $7\,\mathrm{циклов}$ параметр a составляет $14.40\,\mathrm{\AA}$, а после $18\,\mathrm{циклов}$ — $14.72\,\mathrm{\AA}$.

Осуществлено "догидрирование" образца, полученного взаимодействием фуллерена с аммиаком при 400°C, путем дегазации продукта в вакууме при 250 или 350°C в течение 1 ч с последующей обработкой водородом высокой чистоты, выделяемым ИЗ аккумулятора на основе LaNi₅. Гидрирование водорода 2 МПа проводили под давлением при температуре 400 ИЛИ 450°C. При ЭТОМ продуктами гидрирования являются соединения, имеющие состав $C_{60}H_{24}N_{0.15}$ и $C_{60}H_{30}N_{0.1}$ И содержащие 3.2 4.0 мас. % водорода, соответственно.

Исследованы магнитные свойства продуктов обработки фуллерита аммиаком и установлено, что образец, полученный при 300°С, обладает ферромагнитными свойствами комнатной температуре, причем намагниченность достигает достаточно (1.95 эме/г),высоких величин тогда как намагниченность гидрофуллерита $C_{60}H_{24}$ установленная В работе [3], составляет 1.2 эме/г. Содержание железа ферромагнитной примеси в исследуемом образце слишком мало (по данным химического анализа < 0.04 %), чтобы внести значительный вклад в наблюдаемую величину намагниченности, а исходный фуллерит является диамагнетиком. Все это позволяет сделать вывод о том, что наблюдаемый в исследуемом образце магнитный порядок является свойством самой гидридо-нитридной фазы фуллерита.

Величина удельной поверхности кристаллических продуктов, полученных в присутствии хлорида аммония, достигает $12.4~{\rm m}^2/{\rm r}$, а для рентгеноаморфного продукта составляет $26.7~{\rm m}^2/{\rm r}$.

Найденное постепенное накопление в матрице фуллерита атомов водорода и азота хорошо согласуется с известным положением о наличии в кристаллической решетке фуллерита двух тетраэдрических и одной октаэдрической пустот, пригодных для внедрения в них атомов водорода и азота.

Установленный факт разрушения фулеренового каркаса в среде аммиака при температуре ≥ 500°C позволяет сделать вывод о возможности использования аммиака "открывания" концов нанотрубок, закрытых "половинками" фуллерена. молекулы Это положение будет впоследствии детально проверено экспериментально при исследовании поведения многостенных И одностенных нанотрубок в атмосфере аммиака.

Как результат проведенных исследований газо-сорбционных свойств сделан также вывод о возможности применения фуллерена при $\leq 450^{\circ}\mathrm{C}$ в качестве "водородного насоса".

Выводы

Исследовано взаимодействие фуллерита С₆₀ и смеси фуллерита с 8 мас. % хлорида взаимодействия) аммония (промотор аммиаком при начальном давлении аммиака 0.6–0.7 MΠa интервале температур В 150–500°C. Установлено, что повышение 450°C температуры взаимодействия до сопровождается постепенным накоплением в матрице фуллерита атомов водорода и азота. Показано, что при обработке фуллерена аммиаком при 500°C происходит разложение фуллеренового каркаса c образованием рентгеноаморфного продукта. Исследованы физико-химические свойства образующихся в процессе взаимодействия гидридо-нитридных фаз.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 04-03-97231).

Литература

- 1. Dilon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S., Heben M.J. Nature, 1997;386(6623):377–379.
- 2. Тарасов Б.П., Гольдшлегер Н.Ф., Моравский А.П. Успехи химии, 2001;70(2):149–166.
- 3. Antonov V.E., Bashkin I.O., Khasanov S.S., Moravsky A.P., Morozov Yu.G., Shulga Yu.M., Ossipyan Yu.A., Ponatovsky E.G. J. Alloys and Comp. 2002;330–332:365–368.