СТРУКТУРА И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПЛЁНОК ОЛОВО – ФУЛЛЕРЕН С₆₀

Жданок С.А., 1 Шпилевский Э.М., 1 Шпилевский М.Э., 1 Матвеева Л.А.²

¹Институт тепо- и массообмена им. А.В.Лыкова НАН Беларуси, ул. П. Бровки, 15, Минск, 220072, Беларусь ²Институт физики полупроводников НАН Украины, пр. Науки, 45, Киев, 03650, Украина

Введение

В настоящее время формируется новое научное направление — фуллереновое материаловедение. Разработка принципов и приёмов фуллеренсодержащих формирования фуллереноподобных материалов, изучение их свойств актуальны как с позиций фундаментальных исследований, так и с позиций использования таких материалов в различных устройствах (солнечных элементах, оптических затворах, холодных катодах электроннолучевых трубок, полевых транзисторах, парах трения и др.). Как было показано ранее [1], тонкие плёнки олова имеют аномальную зависимость удельного электрического сопротивления от толщины. При значениях толщины 20 - 60 нм удельное электрическое сопроплёнок тивление ниже значений массивного олова.

Методика эксперимента

Композиционные тонкие плёнки получались в вакуумной установке ВУП-4 из совмещённых атомно-молекулярных потоков, образованных молекулами фуллеренов C_{60} , сублимировавших ИЗ находящегося танталовой эффузионной ячейке фуллеритового порошка, и атомов олова, испаряемых с помощью молибденового испарителя. Температура испарителей поддерживалась постоянной во время испарения и составляла для фуллеренов 673 К и 1473К – для олова. Подложкой служила монокристалла кремния. Конденсация проводилась на подогретую до 423 К подложку. Давление остаточных паров в камере при получении образцов не превышало $1\cdot 10^{-3}$ Па. Скорость роста плёнок составляла $3.0 - 3.5 \text{ нм} \cdot \text{c}^{-1}$.

Структура и фазовый состав плёнок исследовались методами электронной микроскопии и рентгенографии, электрическое сопротивление измерялось компенсационным методом.

Результаты и их обсуждение

Тонкие плёнки $Sn-C_{60}$ имеют ультрамелкодисперсную структуру. При изменении долевого состава компонентов плёнок размер зёрен уменьшается с увеличением гетерогенности.

На рис. 1 представлено изображение структуры плёнки $Sn-C_{60}$, полученной в просвечивающем электронном микроскопе.

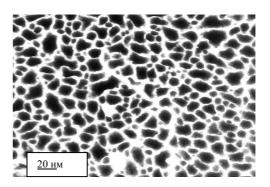


Рис. 1. Электронномикроскопическое изображение плёнок Sn-C₆₀

Представленный снимок иллюстрирует не только малый размер зёрен, но и факт расположения фуллеритной фазы по границам зёрен олова.

При некоторых долевых составах компонентов в плёнках $Sn-C_{60}$ обнаружены дифракционные максимумы, несвойственные ни олову, ни фуллериту, что свидетельствует о наличии новых фаз (рис.2).

Обнаружение металл-фуллереновых фаз представляется важным результатом, так как принято считать, что олово не образует карбидных фаз, а растворимость углерода в нём мала (менее 0,002 ат. %) [2].

Удельное электрическое сопротивление пленок $\mathbf{Sn}\text{-}\mathbf{C}_{60}$ изменяется на 14 порядков при изменении долевого состава компонентов от 0 до 100%.

Температурные зависимости электрического сопротивления выявили пять концентрационных зон с разными превалирующими механизмами переноса заряда. Температурный коэффициент сопротивления меняется в широких пределах от положительного до отрицательного. При нагреве и охлаждении наблюдается гистерезис (рис.3).

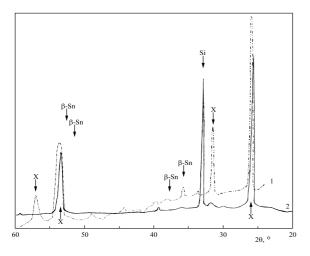


Рис. 2. Рентгенограммы плёнок Sn-C₆₀. 1 — $n_{\rm Sn}$: $n_{\rm C_{60}}$ = 12 , стеклянная подложка; 2 — $n_{\rm Sn}$: $n_{\rm C_{60}}$ = 9 , кремниевая подложка. Знаком «Х» отмечены дифракционные линии неизвестных фаз.

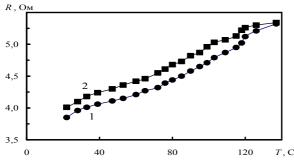


Рис. 3. Зависимость электросопротивления плёнки Sn-C₆₀ от температуры. 1 — кривая нагревания; 2 — кривая охлаждения $(d=600 \text{ нм}, \ n_{\rm Sn}: n_{\rm C_{60}}=80 \).$

Вольтамперные характеристики плёнок $Sn-C_{60}$ нелинейны (рис. 4.).

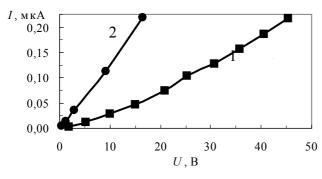


Рис. 4. Вольтамперные характеристики плёнок $Sn\text{-}C_{60}$: $1-n_{Sn}$: $n_{C60}=6$; $2-n_{Sn}$: $n_{C60}=15$.

Электрическая проводимость плёнок пропорциональна квадратному корню из напряжённости электрического поля.

Зависимость проводимости плёнки $Sn-C_{60}$ от напряжённости приложенного электрического поля приведена на рис. 5.



Рис. 5. Зависимость проводимости плёнки Sn- C_{60} от напряжённости электрического поля.

 $n_{Sn}: n_{C60} = 6$ Наблюдаемая активация проводимости электрическим полем свидетельствует о наличии в плёнках металлической и диэлектрической (полупроводниковой) фаз. Структура плёнок представляет собой «островковые» образования, что иллюстрирует рис. 1.

Выводы

- 1. Установлена структурирующая роль фуллеренов при совместной конденсации олова и фуллеренов
- 2. При совместной конденсации олова и фуллеренов для некоторых долевых составов компонентов обнаружено химическое взаимодействие атомов олова с молекулами фуллеренов C60 и образование фуллеридов Sn_xC_{60} .
- 3. При изменении долевого состава компонентов удельное электрическое сопротивление изменяется на 14 порядков, при этом выявляются пять концентрационных зон с разными превалирующими механизмами переноса заряда.
- 4. Для большинства долевых составов компонентов плёнки Sn- C_{60} имеют нелинейные вольтамперные характеристики, их электрическая проводимость активируется электрическим полем.

Литература

- 1. Шпилевский Э.М., Шпилевский М.Э. Электрические свойства ансамблей малоразмерных частиц меди, олова и свинца.// Низкоразмерные системы. Минск: БГУ,1998.- с.80 82.
- 2. Эллиот Р.П. Структуры двойных сплавов. Т. 1.— М.: Металлургия, 1970.— 456 с.