ТРОЙНЫЕ СОЕДИНЕНИЯ ВНЕДРЕНИЯ ГРАФИТ – H_2SO_4 – C_2H_5COOH

Шорникова О.Н.*, Симонова Е.Н., Авдеев В.В.

Московский Государственный Университет им. М.В. Ломоносова, Россия Ленинские горы, д.1, стр.3, Москва, Россия Факс: +7 (095) 939 20 57 E-mail: shoolga@yandex.ru

Введение

Соединение внедрения в графит (СВГ) с серной кислотой, называемое бисульфатом графита (БГ), является сырьем для получения низкоплотного материала — пенографита. Изменение состава внедренного слоя и использование тройных СВГ (ТСВГ) позволяет направленно варьировать свойства пенографита. Настоящая работа посвящена синтезу и изучению свойств соединений, полученных в системе графит — H_2SO_4 — C_2H_5COOH .

Результаты и обсуждение

Синтез тройных соединений внедрения, содержащих молекулы серной и пропионовой кислот, осуществляли анодной поляризацией образцов пиролитического графита в комплексном электролите $H_2SO_4 - C_2H_5COOH$. Основные данные приведены в табл.1.

Таблица 1. Данные электрохимического синтеза в системе графит – $H_2SO_4 - C_2H_5COOH$.

$\frac{1}{2}$				
N*	C_{H2SO4} ,	Q,	$E_{Hg/Hg2SO4,}$	Брутто-
	%	Кл/г	В	формула
I	70	350	1.49	$C_8(H_2SO_4)_{0.77}$
				$(C_2H_5COOH)_{0.23}$
		700	1.49	$C_{7.6}H_2SO_4$
II	30 – 70	170	1.15 – 1.69	$C_{15}(H_2SO_4)_{0.67}$
				$(C_2H_5COOH)_{0.33}$
		800	1.69	$C_{14}H_2SO_4$
III	> 10	120	1.18	$C_{23}(H_2SO_4)_{0.60}$
				$(C_2H_5COOH)_{0.40}$

N* - номер ступени

Уменьшение концентрации H_2SO_4 в электролите сопровождается повышением номера ступени образующихся $TCB\Gamma$, сглаживанием кривых заряжения и смещением их в область более высоких потенциалов. По мере разбавления серной кислоты получение одноименной ступени требует более жестких условий.

Образование ТСВГ I, II и III ступеней происходит при количестве электричества равном 350, 170 и 120 Кл/г соответственно.

Дальнейшая их поляризация сопровождается деинтеркалированием пропионовой кислоты, место которой занимают молекулы H_2SO_4 , и в результате происходит образование бисульфата графита (табл.1). Для ТСВГ характерен меньший привес, содержание серы и толщина заполненного слоя ($d_i = 7.94 \text{ Å}$), чем для БГ [1].

Синхронный термический анализ (ДСК и термогравиметрия), сопряженный с анализом исходящих газов методом ИК - спектроскопии, ТСВГ показал, что разложение эндотермический процесс, происходит в две стадии и сопровождается потерей массы. Деинтеркалирование C₂H₅COOH происходит при температуре 120°C, о чем свидетельствуют данные ИК-спектроскопии (рис.1). Полное удаление кислот из графитовой матрицы 350 заканчивается $^{\circ}C$ И при конечным продуктом является дефектный графит $(d_0=3.38A)$.

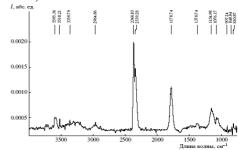


Рис.1. ИК-спектр газовой фазы при 120 °C.

Выводы

Использование тройных СВГ — H_2SO_4 — C_2H_5COOH в качестве сырья для получения пенографита позволяет понизить температуру начала вспенивания до $120~^{\circ}C$ и получать продукт с большей степенью расширения.

Литература

1. Лешин В.С., Сорокина Н.Е., Авдеев В.В. Интеркалирование графита в электролите $H_2SO_4 + CH_3COOH$. Неорганические материалы 2003;39(8):964-970