ОБРАЗОВАНИЕ ТРОЙНЫХ СОЕДИНЕНИЙ ВНЕДРЕНИЯ ГРАФИТА С CuCl₂ и H₂SO₄

Сорокина Н.Е.*, Шорникова О.Н. Никольская И.В., Авдеев В.В.

Московский Государственный Университет им. М.В. Ломоносова, Россия Ленинские горы 1, стр.3, Москва, 119992 Россия

* Факс: +7 (095) 939 20 57 E-mail: shoolga@yandex.ru, nsorokina@mail.ru

Введение

Особое место среди соединений внедрения в графит (СВГ) занимают тройные СВГ, в состав которых входят несколько индивидуальных интеркалирующих агентов, расположенных в определенной последовательности в графитовой матрице. В настоящей работе исследована возможность внедрения H_2SO_4 в СВГ акцепторного типа, в качестве которого было выбрано СВГ с CuCl₂ благодаря его высокой устойчивости к разложению.

Результаты и обсуждение

В системе графит - CuCl₂ в зависимости от условий синтеза возможно образование первой и более высоких ступеней СВГ. Устойчивость полностью заполненной I ступени СВГ с хлоридом меди препятствует внедрению Н2SO4 в графитовую матрицу, поскольку замещение интеркалата не происходит. Вторая ступень обладает только одним незаполненным слоем, тем самым ограничивая варианты для синтеза тройных СВГ. В настоящей работе мы остановили свой выбор на III ступени СВГ которая предоставляла CuCl₂, широкие возможности для варьирования состава и строения СВГ с CuCl₂ и H₂SO₄.

Для синтеза тройных СВГ использовали однофазные образцы III ступени СВГ состава $C_{14.7}$ CuCl₂ с $I_c = 16.26$ Å. Внедрение серной кислоты в СВГ CuCl₂ осуществляли в присутствии окислителя, и в зависимости от времени окислительной обработки возможно получение ряда продуктов: либо называемого «полуторного» СВГ, структура которого образуется попеременно чередующимися слоями интеркалированных CuCl₂, H₂SO₄ и незаполненного слоя, либо (с увеличением времени) co структурой, напоминающей «сэндвич», состоящий из двух слоев H₂SO₄ и одного слоя CuCl₂. Период идентичности полуторного СВГ составляет 21.10 Å, а для соединения типа «сэндвич» -25.50 Å.

Гидролиз тройных $CB\Gamma - CuCl_2 - H_2SO_4$ приводит к необычному соединению, в котором сохраняется структура исходного $CB\Gamma$ с $CuCl_2$, а слои с серной кислотой отсутствуют.

термообработка Дальнейшая образцов, проведенная в мягких условиях (нагрев до 700 °C), позволяет получить уникальный материал, значительно уширенный вдоль оси «с», в составе которого сохраняется соединение внедрения хлорида меди (пеноСВГ). Повышение температуры обработки до 800 -900 °С является фактором, способствующим разложению СВГ с хлоридом меди и получению обычного пенографита на основе окисленного графита.

ПеноСВГ обладает наряду с низкой насыпной плотностью высокой электропроводностью. Повышение электропроводности обусловлено присутствием СВГ с хлоридом меди, в котором происхожит перераспределение π – электронной плотности углерода между молекулами интеркалата, приводящее к появлению дополнительного количества делокализованных дырок в графитовых слоях.

Выводы

В общем виде синтез гетеро- и пенно-СВГ можно представить следующей схемой:

графит
$$\xrightarrow{\text{CuCl}_2}$$
 $\xrightarrow{\text{CB}\Gamma-\text{CuCl}_2}$ $\xrightarrow{\text{H}_2\text{SO}_4+\text{K}_2\text{Cr}_2\text{O}_7}$ $\xrightarrow{\text{CB}\Gamma-\text{CuCl}_2-\text{Окисленный }}$ $\xrightarrow{\text{графит}}$ $<700\,^{\circ}\text{C}$ $\xrightarrow{\text{СВ}\Gamma-\text{CuCl}_2-\text{Пенографит}}$ $\xrightarrow{\text{пенографит}}$ $\xrightarrow{\text{пенографит}}$ $\xrightarrow{\text{мелкодисперсная}}$ $\xrightarrow{\text{фаза окиси меди}}$