STATISTICAL WEIGHT OF FULLERENES FORMATION IN CATALYTIC INTERACTION CONDITIONS OF THE METHANE WITH THE WATER VAPOUR

Igumnov V.S.

Institute of High Temperature of the Russian academy of Science, IVT RAN, 13/19, Izhorskaya str., Moscow 125412, Russia

In work [1] formation nanostructure in conditions catalytic steam conversion (KKM) of methane is considered: $CH_4 + H_2O = 3H_2 + CO(1)$ It is considered, that reaction (1) goes with absorption 206 kJ/mol and is total consisting of two endothermic stages: the first - reactions of decomposition of methane - $CH_4 = C + 2H_2$ (2) with thermal effect 75 kJ/mol and the second -(taking place gasification of carbon nanostructure) - C + $H_2O = H_2 + CO(3)$ with thermal effect 131 kJ/mol. Carbon is formed inside пор the catalyst as nanotube. Patterns for formation nanotube are micro dendrite nickel (МДН). This model of formation nanostructure proves to be true directly and indirectly independent experiments. Quantity of publications considerably[see journal"Carbon"USA]. It is represented probable, that besides nanotube in порах the catalyst can be formed fullerenes.

Interaction CH_4 with H_2O and formation CO and H_2 occurs inside pore the catalyst. A surface pore more than an external surface of granules of the catalyst more than in 10^5 times [2]. Therefore, for statistical model of definition of statistical weight of formation fullerenes (Gf) we shall allocate the idealized fragment of pore ($\text{И}\Phi\Pi$). $\text{И}\Phi\Pi$ - cored the cylinder in diameter 30nm and 150nm.

The considered model is made for KKM on experimental installation which design is described in [3] and industrial tests described in [4.] below described assumptions concern to conditions of works [3] and [4] where the layer of granules of the catalyst has the allocated zone of the most active reaction (3HAP) CH₄ with H₂O, however and in industrial furnaces it is possible to allocate quasi -3HAP.

As statistical weight of macro state (MAC) we shall understand number of ways of micro state (MИС) by which can be realized set MAC attributed to the general number MИС. Macro objects (MAO), statistical weight of formation which are required to be defined, are considered nanotube and fullerenes. MИС there will be discrete contacts (DK). DK - contact between micro objects (МИО), and also МИО with MAO. We shall designate MAO and MИO taking place inside ИФП. ИФП - open system. MAO is

nanotube, MДH, molecules Al₂O₃ [1] making surface $И\Phi\Pi$ and fullerenes. Inside $И\Phi\Pi$ are 10 nanotube and 10 МДН. Their sizes are identical and represent the idealized continuous cylinders in diameter of 2nm and height 15nm. The basis of the cylinder is on internal surface $И\Phi\Pi$, and the axis of the cylinder is directed to axis $\Pi\Phi\Pi$. Molecules Al₂O₃ are vibrators on internal surface ИФП. Al₂O₃ change with frequency 10^{12} - 10^{14} Hz. For one fluctuation energy up to 0,15 eV can be transferred. The area of a surface of the vibrator 20nm². The last on transfer MAO in the present model isfullerene. We shall consider, that is formed only C₆₀ though formation of other structures is possible. MI/O the submitted model cooperating molecules are: CH₄ with H₂O and formed: C, H₂, CO. Each of the listed molecules has the characteristic geometrical form submitted in [5].

Here we shall specially note, that in offered model quantum character of interactions of objects is not taken into account. The problem is put to find out qualitative characteristics of interactions molecular objects their and transformation. As speeds of objects low (speeds of moving of objects in space are stacked in Maxwellian distribution (MD) for T<1200K) it is supposed, that molecules have the known geometrical form [5] which possesses properties of a macro body and, kinetic energy (Εκ) both potential energy (Ep) and a impulse (p) not quantized.

МИС, i.e. DK we shall divide into three kinds of contacts: absolutely elastic impact (АУУ), elastic impact (УУ), absolutely not elastic impact (АНУ). Contacts АУУ - all this contacts МИО to vibrators and contacts: H₂O-H₂, H₂O-H₂O, H₂-H₂, H₂-C; CO, H₂O, H₂-MДH, H₂, CO - nanotube, H₂-CO, H₂-CH₄, CO-H₂O, CO - CH₄.

Fullerenes have Ayy contacts to all other objects. Yy contacts: CH_4 - CH_4 , CH_4 - H_2O , H_2O -C, nanotube - H_2O , C. As a result of these recreation centers can, be formed whether or not others MHO. It depends on full energy of objects. Conditional, boundary size of full energy between Ayy and AHY 0.6 - 1eV.

AHY contacts it chemisorptions CH_4 on $M \square H$ and contact of atoms C. In the first case - are formed nanotube in the second an element Fullerene structures.

The vector of moving for all MMO is directed from one basis $\Pi\Phi\Pi$ to another (input - output). The beginning of coordinate's $\Pi\Phi\Pi$ on an axis of the cylinder on an input. In $\Pi\Phi\Pi$ 20 pairs CH_4 and H_2O enter. The direction of a vector of speed (v) CH_4 and H_2O changes from 0 up to π . $|\mathbf{v}|$ submits to MD for 1100K. An interval of occurrence CH_4 and H_2O - 10^{-10} c. Poisson's distribution for CH_4 and H_2O on the area of basis $\Pi\Phi\Pi$ and a direction of a vector of speed - is set. All micro objects, including and fullerene, have three degrees of freedom in space, rotate around of the center of weight and are not harmonious oscillator. Average time of a presence of separate micro object in $\Pi\Phi\Pi$ - 5×10^{-7} c.

On an output from $\mbox{$\Psi$}\mbox{$\Pi$}$ there are following objects: $\mbox{$H_2$}$, $\mbox{$CO$}$ fullerene. Total probability of occurrence on output $\mbox{$CH_4$}$, $\mbox{$CO_2$}$ and $\mbox{$H_2$}\mbox{$O$}$ - up to 0,1, but for simplification of a problem by their occurrence it is neglected.

Appearing inside ИΦΠ MИO, collide with vibrators on a wall and receive Ek, first of all rotary Ек. Frequency oscillator MИO comes nearer in frequency of vibrators. Ex forward at increase of quantities of a recreation center turns in rotary Ex. It is connected by that the form of objects is not regular and is considerably extended (see [5]) and transfer **p** does not get in the center of weights. Moreover, position of the center of weights of object varies in time (oscillator nonharmonic) and transfer of energy from a body of smaller energy to a body with the greater energy by a rule of the lever is possible. MIO receive more and more rotary Ex and its transformation in Ep chemical connection begins at corresponding recreation centers. MДH not always can form, but can serve as a pattern for cycles C₅ and C₆ and fullerene. Rotary Eκ can be more 2,5eV and CH₄ loses H then МИО - C can exist up to 10⁻⁶c. On the submitted model it has turned out, that G nanotube = 0.007. and Gφ = 0.07. Fullerene and MHO leave HΦΠwith |v| reduced up to PM corresponding T~250K, but with big rotary Ek. It proves to be true experimentally. At selection of gas tests from a layer of the catalyst (see a design in [3]). The metal tube had temperature 260K, and then at transformation rotary Ек in forward Ек was heated up up to 500K. The similar phenomenon was

observed on an industrial pipe with 3HAP [4]. The temperature of pipe KKM was 1250K, the temperature of a by-pass pipe was 600K, and then the by-pass pipe was heated up to 1100K. A presence fullerenes proves to be true indirectly. At formation C_{60} it is allocated 4000Дж/моль. The thermal balance in 3HAP [3] gives deficiency of brought heat. The account of formation C_{60} removes a question. The material balance gives overestimated stochiometric quantity H_2 above CO. At the account of formation C_{60} the balance is leveled.

Presence fullerenes can be checked up in technological gas of industrial tubular furnaces. Gas for the analysis on an output from a pipe is selected through filters. In filters should be fullerenes. At unloading the fulfilled catalyst of pipes KKM on a site quasi-3HAP in pores the catalyst are fullerenes. The sizes of a site quasi-3HAP makes 1m. The note: Pressure (concentration of microobjects on a unit of volume) is significant at the exact decision of a task in view. Qualitative the analysis in an interval 0,5-20 Bar, allows to neglect pressure. Contact C₆₀-H₂O is conditionally qualified.

References

- 1. ИгумновВ.С., « Carbon наноструктуры an intermediate stage in каталитической conversion of metane » // III International symposium « Фуллерены and фуллереноподобные structures in the condensed environments », June, 2004, Minsk.
- 2. The directory азотчика. Т.1 M., Chemistry, 1986.
- 3. To Igumnov V.S. « it is warm and массообмен at каталитической to conversion of metane with the attitude{relation} oxidizer / metane close to стехиометрическому » / the Dissertation on соиск. к.т.н., МИХМ, М., 1990.
- 4. Mostinskij I.L., Igumnov V.S., Vizel J.M., Zyryanov S.I.Kataliticheskaja conversion of natural gas in tubular furnaces at the attitude{relation} oxidizer / metane close to стехиометрическому (H2O (CO2)/CH4 <1,5). Атомно-hydrogen power. Сб. Clauses{articles}. Release №8. Энергоатомиздат, 1988.
- 5. Properties of inorganic connections. Efimov A.I.'s directory /, etc. Π.: Chemistry, 1983. (Tab.
 9. Symmetry and a geometrical configuration of molecules.