ЭЛЕКТРОННАЯ И АТОМНАЯ СТРУКТУРА НЕТРАДИЦИОННЫХ АЛЛОТРОП УГЛЕРОДА И ПОЛИМОРФ НИТРИДА БОРА

Покропивный В.В.*, Бекенев В.В.

Приведен обзор нетрадиционных аллотроп углерода и полиморф нитрида бора, как оригинальных так и известных в литературе, включая аморфный и металлический углерод, карбины, чаоит, "кубический графит", нанотрубчатые кристаллы, Е-фазу, и т.п. Собраны, показаны и проанализированны их структуры, предсказанные теоретически и найденные экспериментально.

Предсказан набор краисталлообразующих фуллереновых кластеров как строительных блоков плотно упакованных кристаллов. Сконструированы их элементарные ячейки с гцк, оцк, гексагональной, алмазной решетками.

Впервые *ab-initio* FLAPW методом рассчитана зонная структура, уравнение состояния, плотности электронных состояний, карты электронной плотности, новых аллотроп углерода и полиморф нитрида бора.

Вычислена электронная структура простого кубического фуллерита ПКФ-С24 и фулборенита ПКФ- $B_{12}N_{12}$ (рис.1.1). Равновесные межатомные расстояния a_{CC} =0.1550 нм и a_{BN} = 0.1537 нм имеют значения, промежуточные между алмазом (сфалеритным BN) и графитом (h-BN). ПКФ-С₂₄ - алмазоподобный молекулярный диэлектрик или полупроводник с шириной щели 1.6 эВ. Это новый углеродный цеолит сочетающий генетическую пористость неполяризуемость с высокими механическими свойствами (объемный модуль В=196 ГПа, модули упругости C_{11} =338 ГПа, C_{12} =139 ГПа, C_{44} =30 ГПа), химической инертностью и высокой теплопроводностью. Все это указывает на него как на перспективный низко-диэлектрический материал (є < 5.7) для интерконнекторов и подложек интегральных схем.

 $\Pi K\Phi - B_{12} N_{12}$ - алмазоподобный молекулярный полуметалл с шириной щели $0.1~\mathrm{3B}.$

Фулборенит ПКФ- $B_{24}N_{24}$ показан на рис.1.2. Его строительные единицы - кластеры $B_{24}N_{24}$ были обнаружены недавно в масс-спектрах расплавленного дугой ВN. Вычислены следующие параметры : равновесный параметр решетки A=0.73458 нм, длина B-N связей $a_{\rm BN}=0.1521$ нм, число атомов на элементарную ячейку Z=48, плотность $\rho=2.495$ г/см³,

объемный модуль B= 367 ГПа, ширина щели ΔE_g =3.76 эВ. Сделан вывод что это гетерополярный сверхтвердый полупроводник или диэлектрик.

Вычислена электронная структура гипералмазного фулборенита $\Gamma A\Phi$ - $B_{12}N_{12}$ (рис.1.3). Объмный модуль $\Gamma A\Phi$ - $B_{12}N_{12}$ вычисленный предварительно без оптимизации геометрии B=590 GPa, оказался выше, чем у алмаза (B=540 GPa). Это новый сверхтвердый нитридборный полупроводниковый фажозит.

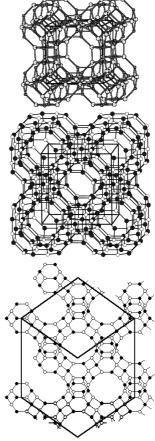


Рис. 1. Элементарные ячейки : 1)ПКФ- $B_{12}N_{12}$ в котором молекулы $B_{12}N_{12}$ связаны ковалентно квадратными гранями; 2)ПКФ- $B_{24}N_{24}$, в котором кластеры $B_{24}N_{24}$ кополимеризованы октаэдри-ческими гранями; и 3) ГАФ- $B_{12}N_{12}$, в котором молекулы $B_{12}N_{12}$ кополимеризованы гексаго-нальными гранями.