ГАЗОФАЗНЫЙ СИНТЕЗ СОЕДИНЕНИЙ ВНЕДРЕНИЯ ГРАФИТА С FeCl₃ И МАТЕРИАЛОВ НА ЕГО ОСНОВЕ

<u>Никольская И.В.*,</u> Хрестенко Р.В., Сизов А.В., Авдеев В.В.

Московский Государственный Университет им. М.В. Ломоносова, Россия Ленинские горы, д.1, стр.3, Москва, Россия

* Факс: +7 (095) 939 20 57 E-mail: shoolga@yandex.ru

Введение

Изучением соединений внедрения в графит (СВГ) с хлоридами переходных металлов занимаются более половины века. Интерес к ним вызван особенностями строения (регулярная слоистая структура, характеризующаяся высокой анизотропией свойств), что делает эти соединения идеальными объектами для изучения физики и химии двумерного состояния. Кроме того, изучение СВГ с соединениями переходных металлов имеет практическую сторону в связи с возможностью использования последних в качестве материала получения пенографита, содержащего включения металла.

Результаты и обсуждение

Газофазным методом в двухсекционных ампулах в вакууме получены образцы 1 и 2 ступеней СВГ с FeCl₃ В качестве исходного использовали высокоориентированный пиролитический графит УПВ1-ТМО. Синтез проводился в градиентной печи: температура FeCl₃ постоянна для всех опытов и равна 300°C. Варьирование состава соединений проводили меняя градиент температуры, причем температура графита всегда выше температуры Результаты хлорида железа. синтеза представлены в таблице.

Таблица 1. Результаты газофазного синтеза СВГ с FeCl₃.

GradT, °C	τ, ч	Δm, %	N (I _c , Å)	Состав
10	18	207.0	I (9.39)	C _{6.6} FeCl ₃
	25	225.5	I (9.41)	C _{6.0} FeCl ₃
60	3	42.2	II (12.72)	$C_{32.1}$ FeCl ₃
	25	112.9	II (12.81)	$C_{12.0}$ FeCl ₃

Проведенные РФА и синхронный ДТА-ДСК анализы свидетельствуют о получении СВГ с

 I_c =9.40 Å и 12,78 Å для I и II ступеней соответственно, что находится в согласии с литературными данными [1].

Изучена устойчивость СВГ в различных средах и реагентах: воздух, H_2O , HNO_3 , HCl. Установлено, что хранение СВГ с хлоридом железа на воздухе в течение недели приводит к образованию смеси исходной ступени и графита. Обработка $CB\Gamma - FeCl_3$ 98 % HNO_3 сопровождается образованием $TCB\Gamma$. $CB\Gamma$ с хлоридом железа устойчивы в HCl — даже длительная обработка не влияет на фазовый состав соединения.

Показана возможность получения пенографита с высокой степенью расширения при термоударе СВГ с $FeCl_3$.

Изучено взаимодействие $CB\Gamma-FeCl_3$ с литий-нафталин-тетрагидрофураном. Показано, что протекает восстановление Fe^{3+} и образование графита, допированного кластерами железа.

$$C_pFeCl_3 + Li$$
- нафталин $\rightarrow \{C-Fe\} + LiCl$

Показана возможность получения пенографита, обладающего магнитными свойствами.

Выводы

Синтезированы высокоупорядоченные образцы СВГ с $FeCl_3$ I и II ступеней и исследованы их физико-химические свойства. Показана возможность получения пенографита, обладающего магнитными свойствами.

Литература

1. Соложенко В.Л., Калашников Я.А. Синтез и физико-химическое исследование ССГ с FeCl₃. – Вест. МГУ. Химия, 1981, т.22, №6, с.591-596.