ВОССТАНОВЛЕНИЕ МЕТИЛОВОГО ЭФИРА 4-БРОМКУБАНКАРБОНОВОЙ КИСЛОТЫ АЛЮМОГИДРИДОМ ЛИТИЯ И ГИДРИДОМ АЛЮМИНИЯ

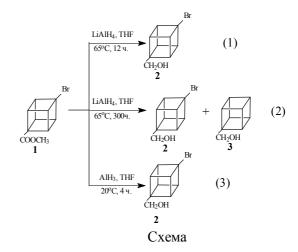
Захаров В.В.*, Бугаева Г.П., Баринова Л.С., Лагодзинская Г.В., Романова Л.Б., Еременко Л.Т

Институт проблем химической физики Российской академии наук г. Черноголовка, Московская область, 142432 Россия * Факс: (096)5153588 E-mail: vzakh@icp.ac.ru

Введение

Данное сообщение является продолжением серии работ по восстановлению кубановых производных с различными функциональными группами гидридами легких металлов [1-3].

В связи с неослабевающим интересом к производным кубана как к потенциальным фармацевтическим препаратам [4-8] и многостадийностью их синтеза весьма актуальной является разработка эффективных, селективных методов модификации соединений с кубановым фрагментом и изучение их структуры.


Одной из основных целей этой работы была разработка более эффективного по сравнению с известным ранее [9] метода получения и изучение структуры 4-бром-1-гидроксиметилкубана, который может быть использован в качестве полупродукта для синтеза некоторых биологически активных веществ, в частности, нитратов кубансодержащих спиртов.

Результаты и обсуждение

На начальном этапе исследований было изучено восстановление эфира 1 (см. схему) алюмогидридом лития в $T\Gamma\Phi$.

Наши попытки повысить выход карбинола 2 по сравнению с описанным ранее (80%) [9] при восстановлении этого эфира алюмогидридом лития (LAH) при более высокой температуре $(65^{\circ}C)$, значительном избытке LAH (от 3:1до 10:1) и большей длительности процесса оказались неудачными: выход карбинола 2 не превышал 80%, а при проведении реакции в течение 48-300ч он снижался вследствие восстановления не только сложноэфирной группы, гидродебромирования (схема, ур.1 и 2).

С целью разработки гораздо более эффективного и селективного метода получения карбинола **2** нами было изучено восстановление **1** гидридом алюминия.

Установлено, что восстановление 1 гидридом алюминия протекает в мягких условиях (15-25°С), значительно быстрее(4ч при 20^{0} С), чем с LAH, и приводит к целевому продукту с более высоким выходом (~94%) (схема, ур.3). Кроме того, восстановление 1 AlH $_{3}$ протекает высокоселективно (гидродебромирование не происходило при восстановлении эфира 1 AlH $_{3}$ в течение нескольких суток).

Синтезированный нами карбинол 2 был идентифицирован на основании данных элементного анализа, ¹H и ¹³C ЯМР и ИК спектров. Т.пл. 123-125°С. Найдено (%): С. 50.92; H, 4.38; Br, 37.38. С₉Н₉ВгО. Вычислено (%): С, 50.73; Н, 4.26; Вг, 37.50. Спектр ЯМР ¹H: 1,70 (c, 1H, OH); 3.79 (c, 2H, <u>CH</u>₂OH); 4.00 (м, 3H, <u>CH</u>CCH₂, А-часть AA'A''ВВ'В'', Δν≈30); 4.18 (м, 3H, CH_{cube}CBr, В-часть AA'A''BB'B''). Спектр ЯМР ¹³С: 45.18 (3С, CH_{cube}CCH₂OH); 54.19 (3C, CH_{cube}CBr); 59.12 (1C, C_{cube}CH₂OH); 62.99 (1C, CH₂OH); 64.96 (1C, CBr). ИК-спектр (KBr), v/см⁻¹: 3260 оч.с (OH); 2987 ou.c (CH); 2922 cp, 2853 cp (CH₂); 1456 сл (СН₂); 1432 сл (ОН); 1316 ср. (СН); 1249 сл.(С- С); 1203 с. (С_{сиве}-Вг); 1192 сл., 1120 сл., 1101 сл. (С-С); 1035 оч.с, 1004с (ОН); 839 cp. (C-C); 815cp. (C-Br).

Выводы

- 1. Исследовано восстановление метилового эфира 4-бромкубанкарбоновой кислоты (1), алюмогидридом лития и гидридом алюминия в ТГФ.
- 2. Разработан эффективный метод получения 4-бром-1-гидроксиметилкубана, заключающийся в восстановлении 1 AlH3 в мягких условиях.

Благодарность

Авторы выражают признательность В.П. Лодыгиной за анализ ИК-спектров.

Работа выполнена при финансовой поддержке Международного научно-технического центра (проект № 1550).

Литература

- 1. Zakharov V.V., Bugaeva G.P., Ivanova M.E., Romanova L.B., Eremenko L.T. Reductions of cubane and homocubane derivatives with various functional groups by lithium aluminum hydride. 7th Int Conf "Hydrogen Materials Science & Chemistry of Metal Hydrides", Alushta, Ukraine, Sept.16-22, 2001, Extended abstracts of reports, p.p. 286-289.
- 2. Zakharov V.V., Bugaeva G.P., Ivanova M.E., Romanova L.B., Eremenko L.T., Nefedov S.E., Eremenko I.L. Cubane derivatives.4. Synthesis and molecular structure of 1,4-bis(hydroxymethyl)-cubane. Rus. Chem. Bull. 1998; 47 (7):1349-1352.

- 3. Zakharov V.V., Bugaeva G.P., Andreeva N.Yu., Romanova L.B., Eremenko L.T. Cubane derivatives.5. Synthesis of 1-bromo-ethylenedioxypentacyclo[4.3.0.0^{2,5}.0^{3,8}.0^{4,7}]non-4-ylcarbinol. Rus. Chem. Bull. 1998; 47 (11): 2226-2228.
- 4. Zakharov V.V., Bugaeva G.P., Malygina V.S., Romanova L.B., Eremenko L.T. The reduction of cubane derivatives with various functional groups by sodium borohydride in different solvents. XIthInt Conf on boron chemistry, Moscow, Russian Federation, July 28-August 2, 2002, Abstracts of reports, p. 163.
- 5. Zakharov V.V., Bugaeva G.P., Malygina V.S., Romanova L.B., Eremenko L.T. The reduction of 4-bromocubanecarboxamides by lithium aluminum hydride and aluminum hydride. 8th Int Conf "Hydrogen Materials Science & Chemistry of Metal Hydrides", Sudak, Ukraine, Sept.14-20, 2003, Extended abstracts of reports, p.p.312-315.
- 6. Coyle A. New drugs come with a bang. Chemistry in Britain 1995; 31: 183.
- 7. Hasegawa T., Nigo T., Kakita T., Toyoda H., Toya H., and Ueda I. Chem. Pharm. Bull. 1993; 41:1760.
- 8. Bashir-Hashemi A., Iyer S., Alster J., and Slagg N. Chem and Ind., 1995: 551.
- 9. Klunder A.J.H., and Zwanenburg B. Chemistry of strained polycyclic compounds-VII. A base induced homoallylic rearrangement in the homocubane and cubane system. Tetrahedron 1975; 31: 1419.