СИНТЕЗ 4-БРОМКУБАН-1-КАРБАЛЬДЕГИДА С ИСПОЛЬЗОВАНИЕМ ГИДРИДА БИС(N-МЕТИЛПИПЕРАЗИНИЛ) АЛЮМИНИЯ

Захаров В.В.*, Бугаева Г.П., Баринова Л.С., Романова Л.Б., Шастин А.В., Еременко Л.Т

Институт проблем химической физики Российской академии наук г. Черноголовка, Московская область, 142432 Россия

* Факс: (096)5153588 E-mail: vzakh@icp.ac.ru

Введение

Химия простых и комплексных гидридов легких металлов развивается в последние годы в значительной степени в связи с разработкой методов селективного восстановления различных функциональных групп в органических соединениях.

В связи с интересом к соединениям, содержащим кубановые фрагменты, как потенциальным фармацевтическим препаратам [1-3], является весьма актуальным разработка удобных и эффективных методов получения таких производных и их прекурсоров, в частности, кубанкарбальдегидов.

Данное сообщение является продолжением серии работ по восстановлению кубановых производных с различными функциональными группами гидридами легких металлов[4-7].

Одним из проблематичных превращений в органической химии является восстановление карбоновых кислот до альдегидов. Ряд известных двустадийных методов такой трансформации (например, восстановление алюмогидридом лития ипи другим восстановителем до спирта с последующим окислением) имеет ряд недостатков, частности, двустадийность и не всегда высокую селективность.

Ранее [8] нами был синтезирован 4-бромкубан-1-карбальдегид путем окисления 4-бром-1-гидроксиметилкубана системой ТЕМПО (2,2,6,6-тетраметилпиперидин-N-оксил)-трихлорциануровая кислотабикарбонат натрия в хлористом метилене. Предварительно 4-бром-1-гидроксиметилкубан был получен при восстановлении 4-бром-1-кубанкарбоновой кислоты или ее эфира гидридом алюминия [9].

Однако в связи с особой специфичностью синтезов кубановых производных (многостадийность, высокая стоимость исходных кубансодержащих реагентов) для восстановления 4-бромкубанкарбоновой кислоты и ее эфира до альдегида была необходима разработка одностадийного метода.

Результаты и обсуждение

В качестве восстановителя был использован мягкий нуклеофильный реагент, гидрид бис(N-метилпиперазинил) алюминия [10], полученный нами специально для этой цели с использованием алюмогидрида лития и N-метилпиперазина.

результате изучения процесса восстановления 4-бром-1-кубанкарбоновой кислоты эфира гидридом бис(N-метилпиперазинил)алюминия в различных условиях было установлено, что кипячение реакционной смеси в $T\Gamma\Phi$ при $65^{\circ}C$ в течение 6-12ч с последующим гидролизом и обработреакции продуктов (разделением органической и водной фаз, промывкой и осушкой органической фракции и отгонкой растворителя) приводит получению 4-бромкубан -1- карбальдегида с незначительной примесью (5-10%)4-бром-1-гидроксиметил-кубана.

4-бромкубан-1-карбальдегида перекристаллизации полученного продукта из гексана составил 85-92%. 4-Бромкубан-1карбальдегид был идентифицирован основании данных элементного анализа, ¹Н и ¹³С ЯМР и ИК спектров. Т.пл. 136-140°С. Найдено (%): С, 51.31; Н, 3.39; Вг, 37.73. С₉Н₉ВгО. Вычислено (%): С, 51.21; Н, 3.34; Вг, 37.86. Спектр ЯМР ¹H (δ, м. д., J, Гц, CDCl₃, TMC): ~4.29 M (3H, CHCC(O), AA'A''BB'B'', Δν≈33 Γιι); ~4.46 м (3H, CHCBr, В-часть АА'А''ВВ'В''); 9.76 с (1H,С(О)Н). Спектр ЯМР 13 С{H} 13 С{H}DEPT(*)(δ , м. д., CDCl₃, TMC): 46.49 c (3C, $\underline{C}H_{cube}C_{cube}C(O)$; 54.50 c (3C, CH_{cube}C_{cube}CBr); 197.39 c (1C, C(O). ИК-спектр (КВr), ν /см⁻¹: 3001ср, 1292 сл (СН_{сиве}); 2809 ср. 2715 ср. 1379 сл. 1037 с (H-C=O); 1204 c, 805 cp (C_{cube}-Br).

Характеристики синтезированного ЭТИМ соединения 4-бромкубан-1методом И карбальдегида, полученного путем окисления 4-бром-1-гидроксиметилкубана системой ТЕМПО (2,2,6,6-тетраметилпиперидин-N-оксил) трихлорциануровая кислота бикарбонат натрия [8] являются идентичными.

Таким образом восстановление 4-бром-1-кубанкарбоновой кислоты и ее эфира гидридом бис(N-метилпиперазинил)алюминия в ТГФ позволяет упростить процесс получения 4-бромкубан-1-карбальдегида и повысить его выход.

Вывод

Разработан одностадийный метод получения 4-бромкубан-1 карбальдегида из 4-бром-1-кубанкарбоновой кислоты и ее эфира, заключающийся в восстановлении их гидридом бис(N-метилпиперазинил)алюминия в ТГФ.

Благодарность

Авторы выражают признательность Г.В. Лагодзинской и В.П. Лодыгиной за анализ ЯМР и ИК – спектров.

Работа выполнена при финансовой поддержке Международного научнотехнического центра (проект N 1550).

Литература

- 1. Coyle A. New drugs come with a bang. Chemistry in Britain 1995; 31: 183.
- 2. Hasegawa T., Nigo T., Kakita T., Toyoda H., Toya H., and Ueda I. Chem. Pharm. Bull. 1993; 41:1760.
- 3. Bashir-Hashemi A., Iyer S., Alster J., and Slagg N. Chem. and Ind., 1995: 551.
- 4. Zakharov V.V., Bugaeva G.P., Ivanova M.E., Romanova L.B., Eremenko L.T. Reductions of cubane and homocubane derivatives with various functional groups by lithium aluminum hydride. 7th

- Int Conf "Hydrogen Materials Science & Chemistry of Metal Hydrides", Alushta, Ukraine, Sept.16-22, 2001, Extended abstracts of reports, p.p. 286-289.
- 5. Zakharov V.V., Bugaeva G.P., Ivanova M.E., Romanova L.B., Eremenko L.T., Nefedov S.E., Eremenko I.L. Cubane derivatives.4. Synthesis and molecular structure of 1,4-bis(hydroxymethyl)-cubane. Rus. Chem. Bull. 1998; 47 (7):1349-1352. 6. Zakharov V.V., Bugaeva G.P., Malygina V.S., Romanova L.B., Eremenko L.T. The reduction of cubane derivatives with various functional groups by sodium borohydride in different solvents. XIthInt Conf on boron chemistry, Moscow, Russian Federation, July 28-August 2, 2002, Abstracts of reports, p. 163.
- 7. Zakharov V.V., Bugaeva G.P., Malygina V.S., Romanova L.B., Eremenko L.T. The reduction of 4-bromocubanecarboxamides by lithium aluminum hydride and aluminum hydride. 8th Int Conf "Hydrogen Materials Science & Chemistry of Metal Hydrides", Sudak, Ukraine, Sept.14-20, 2003, Extended abstracts of reports, p.p.312-315.

 8. Шастин А.В., Еременко Л.Т., Романова Л.Б., Захаров В.В., Лагодзинская Г.В. Окисление гидроксиметилкубанов системой ТЕМПО-
- Захаров В.В., Лагодзинская Г.В. Окисление гидроксиметилкубанов системой ТЕМПО-трихлорциануровая кислота. Менделеевский Съезд по общей и прикладной химии "Достижения и перспективы химической науки", Казань, Россия, 21-26 сент. 2003 г., Тезисы докладов, т.2, с.414.
- 9. Захаров В.В., Бугаева Г.П., Баринова Л.С., Лагодзинская Г.В., Романова Л.Б, Александров Г.Г., Еременко И.Л, Еременко Л.Т. Сообщ. 7. Синтез и молекулярная структура 4-бром-1-гидроксиметилкубана. Изв. АН, Сер. хим. 2005 (в печати). 10. Hubert T.D., Eyman D.P., and Wiemer D.F. A convenient synthesis of bis(N-methylpiperazinyl)-aluminum hydride. J.Org.Chem. 1984; 49: 2279- 2281.