ИССЛЕДОВАНИЕ ПРОЦЕССОВ ВЫСОКОЭНЕРГЕТИЧЕСКОГО РАЗМОЛА ПОРОШКОВ ТіН₂-ВN В АТМОСФЕРЕ АЗОТА

Хобта И.В., Петухов А.С., Исаева Л.П., Лобунец Т.Ф., Тимофеева И.И.

Институт проблем материаловедения им. И.Н. Францевича НАНУ ул. Кржижановского 3, 03680, Киев, Украина e-mail: hobta igor@ipms.kiev.ua

Современный уровень развития науки и обусловливает техники необходимость разработки тугоплавкой керамики с высокими механическими свойствами для изготовления режущих инструментов, в частности материалов на основе композиции ТіN-ТіВ2, [1, 2].

Цель данной работы – исследование процессов, а также отработка оптимальных режимов высокоэнергетического размола смеси TiH₂+BN в атмосфере азота для дальнейшего получения плотной тугоплавкой композиции TiN-TiB₂ c высокой твердостью трещиностойкостью.

В исследованиях использовались два вида дигидрида титана, которые обозначаются ТіН₂ и ТіН_x. Данные дигидриды получены на основе, соответственно, магниетермического и иодидного титана, которые отличаются по количеству примесей [3]. TiH_2 кубическую структуру ГЦК типа CaF₂, TiH_x тетрагональную. Наличие тетрагональной структуры ТіН_х свидетельствует о более высоком содержании водорода в нем [3].

Табл. 1 Свойства исходных и размолотых порошков и смесей

порошков и смесеи.							
Порошок	Результа-	$S_{yд.}$,	$d_{cp,}$	Ο,	Fe,		
	ты РФА*	${\rm m}^2/{\rm \Gamma}$	HM	%ма	%масс		
				cc.			
TiH _x	ТіН ₂ тетр.	0,233	8310	0,13	0,038		
TiH ₂	ТіН ₂ куб.	0,225	7050	0,12	0,25		
BN	BN+B ₂ O _{3 C.}	2,82	930	5,40	0,034		
TiH _x +	ТіН2+ВИСЛ	3,63	580	1,55	0,48		
BN (1')							
TiH _x +	ТіН2+ВИСЛ	10,81	190	1,6	1,03		
BN (5')	+ТіВ _{2 ОЧ.СЛ.}						
TiH _x +	TiH ₂ +BN _{OЧ}	15,00	140	3,6	2,25		
BN(20')	$_{\text{СЛ.}}$ + $\text{TiB}_{2\text{СЛ.}}$						
TiH ₂ +	TiH ₂ +	3,44	540	1,86	0,4		
BN (1')	В N _{слаб}						
TiH ₂ +	TiH ₂ +BN _{OЧ.C}	10,54	173	2,11	0,76		
BN (5')	л.+ТiВ _{2 ОЧ СЛ.}						
TiH ₂ +	TiH ₂ +TiB ₂	12,34	150	4,57	1,37		
BN(20')	слаб.						

*С., сл., оч.сл. – сильная, слабая, очень слабая относительная интенсивности отражений дифрактограммы, соответственно.

Свойства исходных и размолотых порошков и смесей указаны в Табл.1. Рентгенофазовый анализ (РФА) нитрида бора показал сильную интенсивность линий B_2O_3 . Соотношение $TiH_2(TiH_x)$: BN равно 74,9: 25,1, что соответствует стехиометрическому составу реагентов в реакции:

$$TiH_2 + BN = 2/3TiN + 1/3TiB_2$$
 (1)

Наполнение цилиндров для размола производилось азотом под давленим Р=0,2КПа на протяжении t=10 мин. Размол проводился на планетарно-центробежной мельнице протяжении 1, 5, и 20 минут. Определение удельной поверхности проводилось методом низкотемпературной адсорбции азота (БЭТ). Средний частин порошков размер рассчитывался, исходя из предположения о сферической форме частиц [4], по формуле:

$$d_{cp.}$$
=6/ $(S_{yx.}\cdot\gamma)$, (2) где $d_{cp.}$ - средний размер частичек, мкм; S_{yz} - удельная поверхность порошка,м²/г;

 γ -плотность порошка, г/см³.

После размола в течение 1 мин. состав фаз практически соответсвует исходному. При времени размола 5 – 20 минут рентгенофазовый анализ показывает изменение фазового состава. Так, интенсивность линий нитрида бора понижается вследствие аморфизации [5], и при времени размола от 5 минут и более происходит механохимический синтез образованием ТіВ2. Как видно из Табл.1, в результате размола в течение 5-20 минут происходит значительное окисление и намол железа.

Результаты исследования зависимости удельной поверхности от времени размола приведены на Рис. 1, из которого видно, что интенсивное изменение удельной поверхности происходит при размоле от 1 до 5 минут. При увеличении времени размола до 20 мин. интенсивность изменения удельной поверхности существенно понижается.

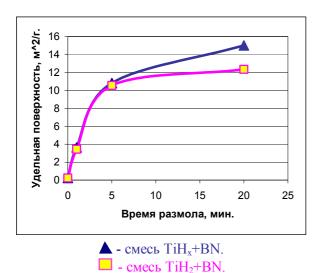


Рис.1 Зависимость удельной поверхности от времени размола.

Табл.2 Результаты исследования фракционного состава исходных и размолотых порошков.

_	$d_{\rm cpeg.}$	По интенс.		По объему	
Порошок	логарифм.,	Кол.	Разбр.,	Кол.	Разбр.,
	HM.	пик	HM	пик	HM
		OB		OB	
BN	455	2	40,5-	3	32,2-
			5107		6430
TiH_x+	272	1	38-	3	31-
BN (1')			3056		3848
TiH _x +	226	1	20,1-	3	16-
BN (5')			801		801
TiH _x +	192	1	22-	3	17-
BN(20')			541		681
TiH ₂ +	291	2	26-	4	21-
BN (1')			3264		4110
TiH ₂ +	233	2	107-	2	90-
BN (5')			494		585
TiH ₂ +	181	2	79-	2	69-
BN(20')			279		321

Исследование фракционного состава методом седиментационного проводилось анализа на основе рассеяния лазерных лучей на приборе Zetasizer 1000HS. Дисперсионной средой для проведения измерений был выбран раствор 0,1% гексаметафосфата натрия в дистиллированной воде. Результаты данных исследований представлены в Табл.2, которой видно, что даже при размоле 1 мин. происходит диспергирование порошка BN. Увеличение времени размола приводит к уменьшению разброса частиц по размерам, то к сужению фракционного состава.

Величина $d_{\text{сред.}}$ логарифм представляет собой усредненное значение диаметра частиц при логарифмически нормальном распределении. Использование распределения размеров частиц по объему вызвано необходимостью уточнения данных распределения размеров частиц по интенсивности согласно теории Міе [6]. Поэтому, как видно из Табл. 2, распределение частиц по объему, как правило, имеет более высокую модальность и более широкую область распределения по размерам.

Размер частиц исходных порошков, а также после 1 мин. размола дают разные значения после определения удельной поверхности и седиментационного анализа, что связано со сложной формой поверхности частиц данных порошков. Увеличение времени размола приводит к сфероидизации формы частиц.

Таким образом, оптимальным временем высокоэнергетического размола в данных условиях является 1 мин., в результате которого получается порошковая смесь TiH_2+BN с удельной поверхностью 3,44-3,63 м 2 /г, содержанием кислорода 1,55-1,86%масс, содержанием железа 0,40-0,48%масс..

Литература

- 1. Shobu K, Watanabe T. Hot Pressing of TiN-TiB₂ System. //J. Powder Mettal. Soc. Jpn.-№32. 1985 P.215–218.
- 2. Shobu K., Watanabe T., Enomoto Y., Umeda K. and Tsuya Y. Frictional Properties of Sintered TiN-TiB₂ and Ti(C,N)-TiB₂ Ceramics at High Temperature.// *J. Am. Ceram. Soc.*, N270 1987 P.103–104.
- 3. Гидриды металлов// Под ред. Мюллера В., Блэкледжа Д., Либовица Дж. М.: Атомиздат, 1973. C.283–290.
- 4. Федорченко И.М., Андриевский Ф.А. Основы порошковой металлургии. Киев: Издательство АН УССР, 1961.
- 5. Du Y.J., Guo F.Q., Lu K. Grain Size Distribution and Morphologies of Nanocrystalline Boron Nitride During Milling.// Nanostruct. *Mater.*, №5. 1996 p. 579-589.
- 6. Berne B.J., Pecora R. Dynamic light scattering. *Wiley interscience*, 1976.