ОСОБЕННОСТИ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ ВОДОРОДА, АЗОТА И КИСЛОРОДА В СЕРОМ ЧУГУНЕ

Афанасьев В.К., Толстогузов В.Н., Койнов В.А. ⁽¹⁾, Коробов В.И. ⁽¹⁾, <u>Селезнёв Ю.А. ⁽²⁾</u>, Золотовский А.А. ⁽²⁾

Сибирский государственный индустриальный университет, ул. Кирова, 42, Новокузнецк, 654007, Россия (1)ОАО «Юргинский машиностроительный завод», ул. Шоссейная, 3, Юрга, 652000, Россия (2)ОАО «ЗСМК», ул. Климасенко, 2, Новокузнецк, 654034, Россия

Металлургами с 20-30-х годов XX века обращалось внимание на присутствие в железоуглеродистых сплавах газов и изучалось влияние их на свойства. Современные исследователи уделяют этому вопросу большое внимание, ими установлено существенное влияние водорода, азота и кислорода на механические, физические и химические свойства чугуна.

В данной работе определение содержания водорода, азота и кислорода проводилось с помощью вакуумной установки горячей экстракции «Эволограф VH-9».

Образцы из серого чугуна СЧ20 подвергались нагреву в интервале 100-1000°С в течение 10 ч и охлаждались на воздухе. Результаты определения водорода, азота и кислорода приведены в таблице. Прежде всего, следует отметить, что уже после нагрева при 100°С в чугуне совершенно не определяется азот. Содержание водорода плавно снижается, а количество кислорода увеличивается до весьма больших значений. Другими словами, нагрев серого чугуна приводит к исчезновению азота и водорода и к появлению большого количества кислорода.

Таблица. Влияние нагрева (τ =10 ч) на содержание водорода, азота и кислорода в сером чугуне

Темпера-	H_2		N_2		O_2	
тура нагрева, °С	ppm	%	ppm	%	ppm	%
без нагрева	20	0,0020	11	0,0011	50	0,0050
100	12,1	0,00121	85	0,0085	74	0,0074
200	14,1	0,00141	следы	следы	204	0,0240
300	9,1	0,00091	следы	следы	346	0,0346
400	9,0	0,00090	следы	следы	482	0,0482
500	9,8	0,00098	нет	нет	1500	0,1500
600	10,8	0,00108	нет	нет	2290	0,2290
700	6,5	0,00065	нет	нет	6000	0,6000
800	4,3	0,00043	нет	нет	10000	1,0000
900	4,0	0,0004	следы	следы	9700	0,9700
1000	7,0	0,0007	следы	следы	11350	1,1350

Изучено изменение газосодержания чугуне, выделения графита в котором удалены с помощью разработанного способа обработки расплава. Образцы из этого чугуна подвергались нагреву в интервале 150-1100°C в течение 5 ч с последующим охлаждением в воду. В этом случае количество кислорода после 580°C незначительного увеличения πо существенно уменьшается после нагрева при 710 и 910°C и вновь резко увеличивается после нагрева при 1100°С. Содержание водорода имеет примерно тот же характер изменения, т.е. уменьшается после нагрева при 710 и 910°C и увеличивается после нагрева при 1100°C. Содержание азота и в этом случае плавно уменьшается после нагрева при 150, 200, 250°C, а после нагрева при более высоких температурах 300, 430, 580 и 710°C вообще не определяется. Очень мало азота определяется после нагрева при 910°C, а после нагрева при 1100°C содержание азота чугуне наибольшее. Аномальные изменения содержания водорода, азота и кислорода при температурах 710 и 910°C указывают на возможность ИХ участия в образовании фазовых составляющих, которые разлагаются при температурах нагрева образцов при анализе.

Полученные результаты для чугуна с выделениями графита и без них указывают на возможность создания водородного механизма расширения железных сплавов. При успешном решении этого вопроса может последовать разработка мероприятий по переводу доменного чугуна в разряд прецизионных сплавов.