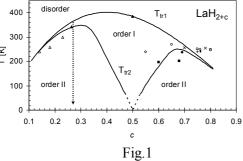
INFLUENCE OF HYDROGEN ORDERING ON THE PROTON SPIN-LATTICE RELAXATION TIME IN SUPERSTOICHIOMETRIC LANTHANUM DIHYDRIDES LaH_{2+c}


Namoradze N.Z.*, Ratishvili I.G. (1)

Institute of Cybernetics, Georgian Academy of Sciences, 5 Sandro Euli str., Tbilisi, 0186 Georgia (1) E.Andronikashvili Institute of Physics, Georgian Academy of Sciences, 6 Tamarashvili str., Tbilisi, 0177 Georgia

*N.Z.Namoradze, namoradze@yahoo.com, Fax: 99532 391494, Phone: 99532-290798.

Introduction

The system under consideration. We consider the β-phase of lanthanum hydrides LaH_{2+c}, where N metal atoms form a fcc lattice, 2N tetrahedral interstices are occupied by 2N hydrogen atoms (denoted as H_T-atoms), and on the set of N octahedral interstices are distributed the additional cN hydrogen atoms (denoted as H_0 -atoms). The subsystem of H_O-atoms undergoes disorder-order and order-order transitions [1]. Correspondingly the high-temperature disordered state temperature T_{tr1} is replaced by the "ordered state I" and at temperature T_{tr2} by the "ordered state II". Phase diagram of the ordering subsystem is presented in Fig.1 [2].

The problem under consideration. In articles [3] we had analytically considered the possible modifications of the temperature dependence of proton spin-lattice relaxation time T₁ in metal hydrides caused by the hydrogen ordering processes. In [4] were given the results of precise NMR measurements of lanthanum hydrides. The aim of the present report can be formulated as an attempt of the numerical calculations of $T_1(T)$ dependence in lanthanum hydride on comparing with the experimental results [4].

Proton spin-lattice relaxation time in hydrides It is well known that

$$T_1^{-1} = T_{1d}^{-1} + T_{1e}^{-1} + T_{1p}^{-1}$$
, (1) where T_1 is the total spin-lattice relaxation time,

T_{1d} is the spin-lattice relaxation caused by dipoledipole interactions, T_{1e} is that caused by conduction electrons, and T_{1p} - caused by paramagnetic impurities. As we wish to compare our results with the measurements [4] performed on "pure" LaH_{2.27}, we shall assume that $T_{1p}^{-1} = 0$.

For electronic contribution will be used the Korringa relation

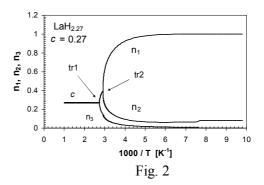
$$T_{1e} = K / T, \tag{2}$$

and for the dipole-dipole contribution - the well

known expression, written as
$$T_{1d}^{-1} = \tau \left[J^H(T)\Sigma_j^H + J^M(T)\Sigma_j^M\right]$$
, (3) where $J^H(T)$ and $J^M(T)$ are temperature-dependent

factors, τ^{-1} is the hydrogen jump frequency,

$$\tau = \tau_0 \exp\left(E_a / k_B T\right). \tag{4}$$


 E_a is the hydrogen jump activation energy.

 $\Sigma_j^M = \Sigma_j^M (\mathbf{r}_j^{-6})$ denotes summation over all metal atoms, and r_i denote the distances between the given interstitial H-atom and all metal lattice sites. $\Sigma_{j}^{H} = \left[\Sigma_{jT}^{H}(\mathbf{r}_{j}^{-6}) + \Sigma_{jO}^{H} \, \mathbf{n}_{j}(\mathbf{T})(\mathbf{r}_{j}^{-6})\right]$ denotes the sum over all tetrahedral and octahedral interstitial positions. Here r_i denote the distances between the position, actually occupied by the "resonant" hydrogen atom, and other interstitial positions. It is assumed that all tetrahedral interstices are occupied by H_T-atoms with a constant probability $n_H = 1$. Octahedral positions are occupied by H₀-atoms with the probability $n_i(T) \leq 1$. In the high-temperature disordered state $n_i(T) = c = \text{const.}$, while in the low-temperature ordered configurations $n_i(T) =$ $n_1(T)$, $n_2(T)$, $n_3(T)$; and, generally, $n_1 \neq n_2 \neq n_3$.

Hydrogen ordering deforms slightly the metal lattice that implies small displacements of metal atoms and H_T-atoms, but we neglect this effect and assume that hydrogen ordering changes only the sum $\sum_{i,O}^{H} n_i(T)(r_i^{-6})$.

Results of numerical calculations.

In Fig.2 is shown redistribution of H₀-atoms in both ordered states.

Temperature variations of equilibrium occupation numbers n_1 , n_2 , n_3 shown in Fig.2 are calculated following the scheme [1].

All numerical calculations we have performed for one compound – LaH_{2.27} (i.e. for c = 0.27), indicated in Fig. 1 by a arrow. Results of experimental determination of T₁(T) dependence in this compound [4] is presented in Fig.3.

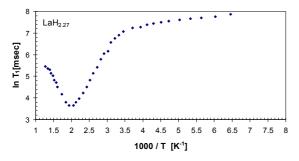
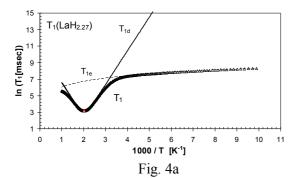
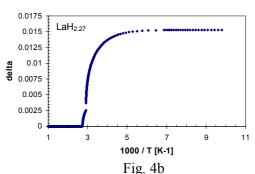
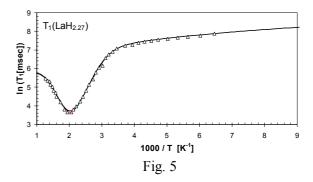




Fig. 3


In Fig.4a we give the theoretical $T_1(T)$ dependence calculated following expressions (1) – (5), on neglecting the ordering effects and using the values of fitting parameters K, τ_0 and E_a proposed in [4], while in Fig. 4b is given the difference in $T_1(T)$ dependences calculated with and without taking into account the ordering effects (illustrated by Fig.2).

In Fig.4b "delta" indicate the difference between the values of $T_1(T)$ dependences calculated on taking into account the ordering effects, and assuming the disordered distribution of H_0 -atoms at all temperatures. As it can be seen the difference seems to be very small to be registered in the measurements.

Fig.5 illustrates the description of experimental points (Fig.3) by the theoretical curve (Fig.4).

Conclusions

- 1. In the hydrides LaH_{2+c} besides the ordering subsystem of H_0 -atoms there exist the unchanged subsystems of H_T -atoms and metal atoms. For this reason the direct effects of hydrogen ordering reflected in changes of the sums in (5) are masked. In transition metal hydrides (Nb-H, V H) the situation is better as all hydrogen atoms undergo the ordering process.
- 2. Nevertheless the ordering processes can influence on the $T_1(T)$ dependences on modifying the hydrogen mobility by variations of the jump activation energy E_a . This effect was pointed out in [5]. We hope that subsequent investigations will illuminate this problem.

References

- 1. Ratishvili IG, Vajda P. "Hydrogen ordering in the superstoichiometric rare-earth dihydrides. The case of a system with an energy constanst ratio $p = V_2/V_1 < 1$. LaH_{2+x}". Phys.Rev. B, 1996; 53:581-587.
- 2. Ratishvili IG, Vajda P. "Phase diagrams of RH_{2+x} systems (R = La, Ce, Tb). Results of mean-field calculations". Journ. All. Comp., 1997; **253-254**: 171-174.
- 3. Ratishvili IG, Namoradze NZ. "Influence of hydrogen ordering on the spin-lattice relaxation time in metal hydrides I. The high-temperature limit". Bull. Georg. Acad. Sciences. 2004; 169 (2), 279-281. "II. The low-temperature limit". *ibid*, 2004; 169 (3), 481-483.
- 4. T.-T Phua, et al., "Paramagnetic impurity effects in NMR determinations of hydrogen diffusion and electronic structure in metal hydrides. Gd3+ in YH₂ and LaH_{2.25}". Phys. Rev. B, 1983; 28: 6227-6250.
- 5. Mamniashvili G, Namoradze N, Ratishvili I, Sharimanov Yu. "Proton Spin-Lattice Relaxation Time in Ordering VH_x alloys".
- J. Phys. Chem. Solids, 2005, (in press).