ВЛИЯНИЕ ВОДОРОДО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОРОШКОВ НИТРИДОВ НА СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ИХ ОСНОВЕ

Морозова Р.А., Морозов И.А., <u>Панашенко В.М.</u>,*Рогозинская А.А., Дубовик Т.В., Иценко А.И.

Институт проблем материаловедения им.И.Н.Францевича НАН Украины, ул. Кржижановского 3, Киев, 03142 Украина * Факс: 38 (044) 424 2131, e-mail: panavic@ukr.net

Введение

В ИПМ НАН Украины разработан метод водородотермической обработки (ВТО) порошков неметаллических нитридов (ВN, AlN, Si_3N_4). ВТО очищает порошки от примесей, активирует процесс усадки пресссовок при спекании, позволяет снизить температуру и время спекания, получить спеченные изделия из этих порошков с более высокими значениями плотности, прочности и удельного электросопротивления [1, 2].

Результаты и обсуждение

Целью работы является исследование влияния ВТО порошков неметаллических тугоплавких соединений на свойства композиционных материалов на основе этих порошков.

Термическая обработка порошков, которую проводят при температуре 1000-1200 °С в присутствии водорода и катализаторов, способствует очистке от кислорода, изменению гранулометрического состава за счет разрушения пленочных соединений между частицами в агрегатах и разрушения этих агрегатов.

Спеченные образцы из порошков после ВТО имеют меньший средний размер зерна, большее содержание анизометрических зерен и содержат высокоплотные образования из дисперсных зерен.

Для исследования влияния ВТО свойства композиционных материалов в системах α-Si₃N₄-AlN, AlN-BN и BN-B₄C подготовлены смеси из исходных порошков и этих же порошков после ВТО. Обработку водородом указанных проводили при температуре 1100 °C 30 выдержке мин. Водород получали разложением ТіН2. Полученные смеси порошков прессовали и затем спекали в азоте при температурах 1550-1800 °C.

Прессовки из материала системы α -Si₃N₄-AlN спекали при 1550 °C. При использовании Al-пудры в качестве добавки к α -Si₃N₄ предполагали, что она в процессе спекания в среде азота проазотируется и перейдет в фазу AlN. Данные по фазовому составу образцов и прочностным свойствам приведены в табл. 1.

Рентгеновский анализ показал, что в образцах из порошков после ВТО примесь Si_2ON исчезает, а линии основных компонентов Si_3N_4 и AlN становятся более четкими, что свидетельствует об упорядочении кристаллических структур. Прочностные свойства образцов при этом повышаются. Электросопротивление всех рассмотренных образцов превышает 10^{10} Ом·см (20 °C).

Прессовки ИЗ материала на нитридов алюминия и бора спекали при 1700 °C. Свойства образцов AlN-BN приведены в табл. 2. Из приведенных данных следует, что в результате ВТО исходных образцах после повышаются их плотность, предел прочности при сжатии, термостойкость и электросопротивление при нагреве. Фазовый состав при этом не изменяется. В исходных образцах, кроме двух основных фаз, на малых углах наблюдается небольшая примесь α-Al₂O₃, которая не исчезает и после ВТО, в то время как линии основных фаз становятся более четкими.

Образцы системы BN-B₄C спекали при температуре $1800\,^{\circ}$ C. Данные по свойствам спеченных образцов приведены в табл. 3. Из приведенных данных следует, что в результате BTO исходных порошков повышаются электросопротивление при нагреве и прочность при сжатии спеченных образцов. В исходных образцах присутствуют фазы BN, B₄C и B₂O₃, а в образцах после обработки остаются две фазы, так как B₂O₃ отсутствует.

Таблица 1 – Свойства материалов системы Si₃N₄- AlN

	Добавка к	Свойство					
Обработка	α -Si ₃ N ₄ ,	Плотность,	Прочность	Количество	Фазовый состав		
	мас. %	Γ/cm^3	при сжатии	теплосмен			
			σ _{сж.} , МПа	(1200-20 °C,			
				воздух)			
Без	20 AlN	2,58	158	39	α -Si ₃ N ₄ , AlN, β -Si ₃ N ₄		
обработки							
	20 Al	2,62	167	45	α -Si ₃ N ₄ , AlN, β -Si ₃ N ₄ ,		
	(пудра)				Si ₂ ON		
После ВТО	20 AlN	2,76	169	43	α -Si ₃ N ₄ , AlN, β -Si ₃ N ₄		
	20 Al (пудра)	2,80	171	49	α -Si ₃ N ₄ , AlN, β -Si ₃ N ₄		

Таблица 2 – Свойства материалов системы AlN-BN (состав шихты 1:1 по массе)

	Свойство						
Обработка	Плотность,	Прочность	Количество	Уд. электросопр.,	Фазовый		
	г/см ³	при сжатии	теплосмен	Ом·см (t, °C)	состав		
		σ _{сж.} , МПа	(1800-20 °C,				
			воздух)				
Без обработки	2,17	90,1	44	$10^{12}(20); 2 \cdot 10^{9}(500);$	AlN, BN,		
				$5.10^6 (1000)$	<i>a</i> -Al ₂ O ₃ (следы)		
После ВТО	2,35	102,3	49	$10^{12}(20); 1,8\cdot10^{9}(500);$	AlN, BN,		
				$6,2\cdot10^{7}$ (1000)	<i>a</i> -Al ₂ O ₃ (следы)		

Таблица 3 – Свойства материалов системы BN-B₄C (состав шихты 1:1 по массе)

	Свойство						
Обработка	Плотность,	Прочность	Количество	Уд. электросопр.,	Фазовый		
	Γ/cm^3	при сжатии	теплосмен (1800-	Ом·см (t, °C)	состав		
		σ _{сж.} , МПа	20 °С, воздух)				
Без обработки	1,9	45,9	58	$10^{13}(20); 1,5\cdot10^{7}(1000);$	BN, B ₄ C,		
				2.10^4 (1500)	$\mathrm{B}_2\mathrm{O}_3$		
После ВТО	2,1	59,8	67	$10^{13}(20); 1,6\cdot10^{9}(1000);$	BN, B ₄ C		
				$1.10^6 (1500)$			

Выводы

Получены предварительные данные ПО исследованию влияния ВТО смесей исходных порошков на свойства композиционных материалов систем α-Si₃N₄-AlN, AIN-BN BN-B₄C. Установлено, что ВТО исходных порошков повышает плотность спеченных образцов, их прочность, электросопротивление при нагреве, термостойкость, упорядочивает кристаллическую структуру, снижает количество кислородсодержащих примесей.

Разработанные материалы могут быть использованы в технике высоких температур в качестве электроизоляторов и термостойких огнеупоров.

Литература

- 1. Morozova R.A., Morozov I.A., Dubovik T.V. et al. The influence of hydrogen-thermal treatment on the densification and structure of nitrides at sintering, *Hydrogen Materials Science and Chemistry of Metal Hydrides* (ICHMS'2001), 243-258, NATO Science Series, II. Maths., Phys. Chem., Vol. 82, Kluwer, Dordrecht 2002.
- 2. Role of hydrogen in production of materials for spacesystem engineering by powder metallurgy methods. Trefilov V.I., Skorokhod V.V., Morozov I.A., Morozov R.O., et al. // Космічна наука і технологія -2003. - Т. 9, № 2. - С. 355-361.