ОБ ОСОБЕННОСТЯХ СОРБЦИОННЫХ ХАРАКТЕРИСТИК СПЛАВОВ НА ОСНОВЕ ФАЗ ЛАВЕСА, ПОЛУЧЕННЫХ В УКРУПНЕННОМ МАСШТАБЕ

<u>Мельников С.А. (1)</u>, Вербецкий В.Н. (2), Митрохин С.В. (2), Никонов В.И. (1), Паршин А.П. (1), Шаталов В.В. (1),

¹ ФГУП "ВНИИ химической технологии", 115230, Москва, Россия ² Московский государственный университет им. М.В.Ломоносова, Химический факультет, 119899, Москва, Россия

Интенсивное развитие исследований в области гидридов интерметаллических соединений (ИМС) обусловлено как научным интересом, так и перспективами применения этих соединений в металлогидридных технологиях. Уже сейчас для решения конкретных задач можно выбирать составы ИМС с заданными свойствами - температурой и давлением образования и разложения гидридов. Среди ИМС со структурой фаз Лавеса практическое значение имеет бинарное соединение TiMn₂, дальнейшее совершенствование которого возможно путем создания многокомпонентных композиций при помощи легирования d-переходными металлами [1, 2]. Отличительной чертой этих материалов является сохранение широкой области гомогенности при изменении содержания основных компонентов и легирующих добавок. Поэтому было решено выплавить материалы некоторого "усредненного" состава, имеющего в своем составе основные компоненты Ті и Мп, а также легирующие добавки - Zr, V, Cr, Fe, Al.

В работе были использованы сплавы следующего шихтового состава (%, масс. дол.): Ті - 28,0; Zr - 7,8; V - 5,5; Cr - 6,2; Мп - 45,5; Fe - 6,5; Al - 0,5. Сплавы выплавляли в индукционной вакуумной печи УППФ-2 с использованием алундовых тиглей или тиглей из графита марки МГ-1. Порядок загрузки шихтовых материалов снизу вверх для всех плавок был следующим: железо, ванадий и цирконий вместе, хром, марганец, титан, алюминий. Рентгеноструктурными исследованиями было установлено, что полученные сплавы были однофазными и имели кристаллическую решетку С14.

Химический состав сплавов, выплавленных в алундовых тиглях, наиболее близок к шихтовому составу. Для получения требуемого состава сплава-накопителя водорода следует внести коррективы в состав исходной шихты. С учетом физико-химических свойств элементов можно рекомендовать уменьшить содержание алюминия и увеличить содержание циркония. Характеристика полученных сплавов и гидридных фаз на их основе приведена в табл. 1.

В процессе выплавления сплава в графитовом тигле происходит значительное увеличение содержания углерода в материале до 2,1% против 0,055% для случая плавки в керамическом тигле). Это явилось причиной того, что материал перестал быть сплавомнакопителем водорода.

Таблица 1. Характеристики сплавов.

Химический	й состав сплвов (% мас. дол.)	
Элемент	Материал тигля		
	Алунд	Графит	
Ti	27,63	29,51	
Zr	5,99	5,77	
V	5,65	5,78	
Cr	6,3	5,55	
Mn	45,01	44,63	
Fe	8,08	7,57	
Al	0,85	0,75	
С	0,055	2,11	
Кристаллическая структура			
Тип решетки	C14	C14	
Период a, Å	4,894	4,893	
Период c, Å	8,017	8,019	
c/a	0,6105	0,6102	
Параметры сорбции водорода			
Равновесное давление Н ₂ (T=273 K)	12,0 атм	-	
Равновесная концентрация H ₂ (%, мас. дол.)	1,79	-	
ΔH , кДж/моль H_2	28,0±2,0	-	
ΔS, Дж/К·моль	120,0±6,0	-	

Была смоделирована плавка в печи, плавильный узел которой имеет конструктивные элементы, изготовленные из графита. Материал был выплавлен в составном тигле, состоящем из внутреннего керамического тигля и внешнего графитового. Сплавы, выплавленные в таком тигле, хотя и имели несколько повышенное содержание углерода (0,1-0,12% масс. дол.), ак-

тивно взаимодействовали с водородом, а их водородоемкость незначительно отличалась от водороемкости сплавов, выплавленных в керамическом тигле. Так равновесное давление водорода при T=273 К составляло $P\approx10,0$ атм, а количество аккумулированного водорода H_2 при этой температуре находилось на уровне 1,70-1,74 %(масс. дол.).

Установлено, что материал, полученный при выплавке в составном тигле, является однофазным и имеет кристаллическую решетку С14. Повторный переплав материала, полученного в составном тигле, не приводит к заметному изменению химического и фазового составов, сорбционных свойств по водороду. В табл.2 приведены свойства гидридных фаз на основе сплавов, полученных повторным переплавом материала после его синтеза в индукционной вакуумной плавке в простом керамическом тигле (сплав 1) и в составном тигле (сплав 2).

Таблица 2. Характеристики сплавов после повторного переплава.

	Сплав 1	Сплав 2	
Unveg			
Кристаллическая структура			
Тип решетки	C14	C14	
Период a, Å	4,83	4,85	
Период с, Å	8,13	8,16	
c/a	0,594	0,594	
Параметры сорбции водорода			
Равновесное давление Н ₂ (T=273 K)	12,0 атм	15,0 атм	
Равновесная концентрация H ₂ (%, мас. дол.)	1,70-1,76	1,68-1,72	
ΔH , кДж/моль H_2	32,0±2,0	25,0±2,0	
ΔS , Дж/К·моль	134,0±6,0	113,0±6,0	

Литература

- 1. Смирнова Т.Н. Синтез и свойства гидридов в системах Ті (Zr)-Мп-V-H₂ в области существования фазы Лавеса//Автореферат диссертации, МГУ, М., 2002 г., С.24.
- 2. Безуглая Т.Н. Структура и водородсорбционные свойства сплавов системы Ті (Zr)-V-Мп со структурой фазы Лавеса//Тезисы научной конференции МГУ "Ломоносовские чтения-2001", 12-15 апреля 2001 г., М., С.109.