ИСПОЛЬЗОВАНИЕ ВОДОРОДА И ФОСФОРА ДЛЯ ПРОИЗВОДСТВА ПОРШНЕВЫХ СИЛУМИНОВ

Афанасьев В.К., Прудников А.Н., Попова М.В., Горбачев Е.В., Горшенин А.В. (1) Сибирский государственный индустриальный университет,

ул. Кирова, 42, Новокузнецк, 654007, Россия

(1) Муниципальное пассажирское автотранспортное предприятие МПАТП-4,

ул. Авиаторов, 9, Новокузнецк, 654011, Россия

наиболее ответственных К числу напряженных деталей двигателей, значительной мере влияющих на эксплуатационные показатели машин, относятся поршни. Различие условий эксплуатации в таких зонах поршня как днище, юбка, канавки, бобышки и др. обусловливает и различные требования к поршневым материалам. Так, для днища требуется высокая твердость и прочность при температурах 280-300°C, для канавок - высокая износостойкость, твердость и прочность при температурах до 230-260°C, для бобышек эти требования включают прежде всего высокую прочность и пластичность при температурах до 150-170°C, для юбки основное требование высокая задиростойкость и низкий коэффициент линейного расширения. В связи с указанным к поршневым сплавам предъявляются довольно жесткие требования: высокая статическая и динамическая прочность, в том числе при рабочих температурах поршня; высокая усталостная прочность, достаточная твердость при нормальной повышенной температурах, теплопроводность; низкий коэффициент линейного расширения, малый удельный вес, хорошие антифрикционные свойства и высокая износостойкость; удовлетворительные технологические свойства, обеспечивающие возможность изготовления качественных деталей при минимальных экономических затратах. Поскольку выполнение столь различных и противоречивых требований чрезвычайно представляют собой задачу, при разработке сплавов, как правило, идут на компромисс, учитывая данные требования в различной мере. В связи с этим для изготовления поршней двигателей используются алюминиевые сплавы на основе систем Al-Si и Al-Cu, так и легированные чугуны, а в последнее время – неметаллические материалы [1,2].

Сравнительный анализ материалов, используемых в отечественном и зарубежном двигателестроении для изготовления поршней, показывает, что наиболее полно указанным требованиям удовлетворяют сложнолегированные

алюминиево-кремниевые сплавы [I]. Наиболее перспективными считаются высококремнистые сплавы, которые более имеют низкий коэффициент линейного расширения, повышенную жаропрочность и износостойкость. Однако наряду с отмеченными преимуществами эти сплавы имеют некоторые недостатки, главным из которых являются низкие механические свойства при обычной температуре, связанные с наличием в их структуре крупных кристаллов первичного не позволяющие проводить кремния качественную пластическую деформацию слитков. В связи с этим большое значение приобретает разработка и внедрение новых более совершенных технологических процессов, позволяющих повысить уровень этих свойств. Для заэвтектических легированных силуминов с содержанием кремния 20% (вес.) и более, используемых для получения изделий по обычной схеме из деформируемых сплавов (слиток -> деформируемый полуфабрикат \rightarrow наиболее эффективным следовательно, И, перспективным является использование обработки сплавов стадии жидкого металла модифицирование. Причем основной целью этой обработки является измельчение и равномерное распределение кристаллов первичного кремния по сечению слитка и, как следствие, улучшение механических характеристик сплавов.

Авторами разработаны составы поршневых Al-Si-сплавов для литых и деформируемых поршней с содержанием кремния до 22% и технологии их приготовления [3, 4]. В состав сплавов входят основные легирующие элементы, способные улучшить физикозначительно механические характеристики силуминов, такие как Си, Мg, Мn, и такие микродобавки Ті, Zr, Са и другие, оказывающие положительное воздействие на структуру сплавов. В качестве модифицирующей обработки для измельчения кристаллов первичного кремния использована совместная обработка водородом и фосфором. Для первого сплава эта обработка смесью, содержащей фосфористую медь, оксиды

железа и никеля и борную кислоту в качестве 0,2-0,5% от веса шихты [5]. Для других сплавов - введение фосфористой меди с одновременным наводороживанием расплава влажными асбестовыми тампонами или без него.

Свойства разработанных и известных деформируемых поршневых сплавов определяли после различных видов деформации в термически обработанном состоянии. Для этого слитки из сплавов отливали на машине полунепрерывной разливки ПН-2 в медный кристаллизатор скольжения диаметром 165 мм. Из слитков вырезали образцы для деформации размером 80х80х200 мм. Кованые прутки сечением 15х15 мм получали свободной ковкой на пневматическом молоте с массой падающих частей 150 кг. Суммарная степень деформации ε=94%. Ковку проводили при температуре 450-480°C с промежуточными отжигами в течение 1 часа. Для штамповки использовали вертикальные гидравлические прессы усилием 70 МН. После термической обработки из кованых прутков и штамповок вырезали образцы для определения механических характеристик и дилатометриического анализа.

Слитки из второго сплава в отличие от первого заливали в кокиль с охлаждением в воде и далее по указанной выше схеме получали образцы с использованием свободной ковки с промежуточными отжигами [4]. Для сравнения полученных результатов с известными были изготовлены в аналогичных условиях слитки и деформированные образцы из сплава АК4 (ГОСТ 4784 - 97) и АК12Д (ТУ 48 - 5 - 248 - 85). Химический состав и механические свойства поковок и штамповок из разработанных и известных сплавов после окончательной термической обработки приведены в таблицах 1 и 2.

Видно, что разработанные сплавы и способы приготовления поршневых заэвтектических алюминиево-кремниевых сплавов, включающие модифицирование фосфором И водородом, позволяют получить более высокие механические свойства по сравнению с известными. Так, после закалки по режиму: нагрев до 500°C, выдержка 2 ч + 520°C, выдержка 1 ч, охлаждение в холодную воду и старение при 150° С в течение 10 ч, сплав №1 обеспечивает по сравнению с известным эвтектическим поршневым силумином АК12Д в кованом состоянии повышение предела прочности на 20%, а в штампованном – на 5% при

тех же значениях пластичности (относительного удлинения), повышение твердости на 5-10% (см. табл. 2). Длительная прочность сплава при 300°C за 100 ч составляет не менее 25 МПа. Средний температурный коэффициент линейного расширения (α_{20-300}) В диапазоне рабочих поршней 20-300°C температур равен $18,5\cdot10^{-6}$ град $^{-1}$, что значительно ниже, чем для сплавов АК12Д и АК4. Удельный вес сплава -2642-2650 кг/м 3 , что также меньше значений сплавов системы Al-Cu, используемых для производства поршней.

Таким образом, использование ДЛЯ легирования заэвтектических Al-Si-поршневых фосфора сплавов И водорода существенно повысить уровень механических свойств слитков, провести качественную горячую пластическую деформацию их и получить более высокий комплекс физико-механических характеристик сплавов В деформированном состоянии после окончательной термической обработки по сравнению с используемыми в промышленности известными сплавами системы Al-Si и Al-Cu.

Литература

- 1. Строганов Г.Б., Ротенберг В.А., Гершман Г.Б. Сплавы алюминия с кремнием. М.: Металлургия, 1977. 271 с.
- 2. Зильберг Ю.Я., Хрущова К.Н., Гершман Г.Б. Алюминиевые сплавы в тракторостроении. - М.: Машиностроение, 1971.
- 3. Афанасьев В.К., Прудников А.Н. Усовершенствование состава деформируемого поршневого заэвтектического силумина // Изв. ВУЗов. Черная металлургия. - 2000.-№12. - С. 27-28.
- Афанасьев В.К., Прудников А.Н. Разработка поршневого заэвтектического силумина и технологии изготовления поршней обработкой давлением // Изв.ВУЗов. Цветная металлургия. - 1999. - №6. - С. 53-56.
- Патент РФ № 2102514. Способ модифицирования заэвтектических силуминов. Афанасьев В.К., Прудников А.Н., Ушакова В.В. и др. Заявл. 09.01.96. Опубл. 20.01.98. Бюл. № 2.

Таблица 1 – Химический состав заэвтектических поршневых силуминов

Сплав	Состав	Содержание компонентов, мас. % (Al- ост.)										
		Si	Cu	Mg	Mn	Ti	Ni	Cr	P	Н	N	Ca
Разработан ные:	1	18	0,6	0,5	0,8	0,1		1	0,01	0,00008	0,2	0,07
№ 1	2	19	0,8	0,7	0,9	0,2	-	-	0,02	0,00015	0,3	0,08
	3	20	1,0	1,0	1,0	0,3	-	-	0,03	0,00025	0,4	0,09
№2	1	20	0,8	0,8	0,9	0,3	0,1 Zr	0,1 Be	0,01	0,00020	-	-
	2	22	1,2	0,5	0,8	0,15	-	0,05 Be	0,02	0,00020	-	-
№3	3	20	1,0	0,4	0,8	0,1	-	0,3	0,01	0,00008	-	-
	1	21	1,5	0,6	1,0	0,2	0,05 Zr	-	0,02	-	-	-
Известные:												
AK4	-	1,0	2,0	1,4	0,8	0,1	1,0	1,0 Fe	-	-	1	-
АК12Д	-	11	2,2	1,1	0,7	0,05	1,0	0,1	0,005 Ве		-	-

Таблица 2 – Механические свойства и температурный коэффициент линейного расширения разработанного и известных поршневых силуминов

Сплав	Соста	Механические свойства								
		Пон	совка		α·10 ⁶ град ⁻¹					
		В	σ _в , ΜΠ a	δ,%	σ _в , МПа	δ,%	НВ, МПа	трад		
Разрабо танные:	1	425	5,5	366	3,3	1140				
№ 1	2	441	4,8	341	2,9	1210	18,5			
	3	448	4,5	340	2,0	1250				
№2	1	407	3,5	-	-	1180				
	2	394	3,0	-	-	1200				
№3	3	404	3,5	294	1,2	1170				
	1	361	2,7	-	-	-				
Извест ные:										
AK4	-	409	3,5	364	4,2	1170	24,0			
АК12Д	-	365	4,8	335	2,0	950	22,0			