КОММЕНТАРИИ ПО ПОВОДУ ПАРАМЕТРОВ ЭВОЛЮЦИИ БЛИЖНЕГО ПОРЯДКА, ОПРЕДЕЛЕННЫХ ПО ДАННЫМ О КИНЕТИКЕ РЕЛАКСАЦИИ ТЕПЛОЕМКОСТИ СПЛАВА Lu-H

<u>Радченко Т.М.*</u>, Татаренко В.А.

Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Акад. Вернадского, 36; 03680, ГСП, Киев-142, Украина * Факс: (380) 44 4242561; E-mail: tarad@imp.kiev.ua, tatar@imp.kiev.ua

Введение

Ближний порядок является уникальной, созданной самой природой концентрационной неоднородностью, масштабы которой соизмеримы с параметрами решетки твердого раствора. Кинетика ближнего порядка определяется микроскопической диффузией атомов на межузельные расстояния. Кинетические измерения его релаксации обеспечивают детальной информацией о дискретном диффузионном механизме — микроскопических характеристиках атомных миграций, включая вероятности и типы атомных прыжков, и энергиях активации диффузии. Кроме того, микродиффузионные измерения могут быть выполнены даже при комнатных температурах из-за кратковременности элементарных диффузионных актов. Такие результаты можно использовать для определения низкотемпературных коэффициентов диффузии и активационных энергий.

Наиболее удобный инструмент для исследования кинетики ближнего порядка — релаксация диффузного рассеяния излучений в растворе [1–3]. Другой способ — изучение изменения интегральных физических свойств, обусловленного эволюцией ближнего порядка, например, релаксации теплоемкости или удельного электросопротивления, которое позволяет более просто и быстрее получить искомые результаты.

Это сообщение посвящено дальнейшему теоретическому анализу кинетики ближнего порядка атомов водорода (Н) на тетраэдрических междоузлиях ГПУ-решетки лютеция (Lu) посредством сравнения результатов, полученных независимыми методами исследования кинетики разных (но обусловленных единой «природой») характеристик — электросопротивления [4, 5] и теплоемкости [6]).

Кинетические модели

Релаксация теплоемкости C_p ГПУ-Lu–H экспериментально изучалась в работе [6]. Из измерений теплоемкости во время изотермического (T=const) отжига [6] можно получить данные о кинетике релаксации ближнего порядка H в Lu. Зависимость

производной $dC_p(t,T)/dt$ от времени t для LuH_c в условиях изотермического отжига наблюдалась при температурах от 130 до 180 К. При изотермической диффузии атомов H в ГПУ-растворе LuH_c ($0 \le c < 0,5$) обратное время релаксации теплоемкости $1/\tau_i$ пропорционально подвижности атомов H v_{Hi} с фактором эффективности χ_i :

$$1/\tau_i = \chi_i (1-c) \nu_{Hi};$$

 v_{Hi} определяется распределением Больцмана:

$$v_{Hi} = v_{0i} \exp(-E_{mi}/(k_B T)).$$

В последнем выражении $E_{\mathrm{m}i}$ является энергией миграции атомов H по i-му «сценарию». В случае пространственного перераспределения атомов H по (тетраэдрическим) междоузлиям она соответствует энергии активации $E_{\mathrm{a}i} \approx E_{\mathrm{m}i}$. Таким образом, температурная зависимость τ_i описывается так называемым «законом» Аррениуса:

$$\tau_i = \tau_{0i} \exp(E_{mi}/(k_B T))$$
, где $\tau_{0i} = 1/(\chi_i (1-c) \nu_{0i})$.

Релаксационные времена $\{\tau_i\}$ теплоемкости для Lu–H были оценены из экспериментальных данных [6] в рамках моделей первого, —

$$\Delta C_p(t,T)/\Delta C_{p0}(T) \approx e^{-t/\tau},$$

$$dC_p(t,T)/dt \approx -\Delta C_p(t,T)/\tau, --$$

и (более реалистического) второго, —

$$\Delta C_{p}(t,T)/\Delta C_{p0}(T) \approx A e^{-t/\tau_{1}} + (1-A)e^{-t/\tau_{2}},$$

$$dC_{p}(t,T)/dt \approx -\Delta C_{p0}(T) \left(\frac{A e^{-t/\tau_{1}}}{\tau_{1}} + \frac{(1-A)e^{-t/\tau_{2}}}{\tau_{2}} \right),$$

— порядков; $\Delta C_p(t,T) = C_p(t,T) - C_{p\infty}(T)$, $\Delta C_{p0}(T) = C_{p0}(T) - C_{p\infty}(T)$, $C_p(t,T)$ — мгновенная теплоемкость (в текущий момент времени t), $C_{p0}(T)$ — исходное значение теплоемкости в начальный момент (t=0) отжига при температуре T, $C_{p\infty}(T)$ — равновесное $(t\rightarrow\infty)$ значение теплоемкости, A и (1-A) — «веса» первого и второго релаксационных «сценариев», соответственно.

Результаты и обсуждение

Результаты измерения теплоемкости $LuH_{0,148}$ описаны моделями первого и второго порядков в

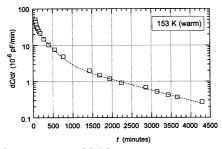


Рис. 1. Зависимость dC_p/dt от t, аппроксимированная моделью второго порядка, для LuH_{0,148} при 153 К [6].

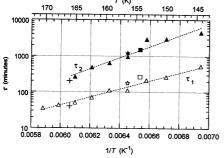


Рис. 2. Зависимости подгоночных (в модели второго порядка) параметров τ_1 и τ_2 от 1/T для LuH_{0.148} [6].

работе [6] (см., например, Рис. 1, 2). Энергии миграции атомов Н были оценены там же в рамках «закона» Аррениуса (см. Табл. 1).

Заменяя в вышеприведенных выражениях теплоемкость C_p на остаточное удельное электросопротивление о, можно их свести к соответствующим кинетическим моделям, которые применимы для описания данных измерения [5] остаточного электросопротивления сплавов LuH_{0,180} и LuH_{0,254} (см. результаты на Рис. 3, 4). Оцененные таким образом энергии миграции также указаны в Табл. 1. Видно, что в среднем энергия миграции в более концентрированном LuH_{0,180}, — $(E_{ml} + E_{m2})/2 = =0,295$ эВ (по данным о р), — превышает энергию миграции в менее концентрированном $LuH_{0.148}$ $(E_{\rm ml} + E_{\rm m2})/2 = 0.26$ эВ (по данным о C_p). Такая корреляция увеличения энергии активации с ростом с свидетельствует о тесной связи факторов, определяющих кинетику двух разных характеристик— C_n иρ.

Автор работы [6] выбрал два подгоночных параметра τ_1 и τ_2 для более «качественного» воспроизведения данных эксперимента. В действи-

Табл. 1. Энергии миграции для сплава Lu–H в моделях первого и второго порядков.

Сплав	_	миграции в го порядка, $E_{\rm m2}$, эВ	Энергия мигра- ции в модели 1-го порядка
монокрист. LuH _{0,148}	0,22 [6]	0,31[6]	
поликрист. LuH _{0,180}	0,30	0,29	0,33
поликрист. LuH _{0,254}			0,38

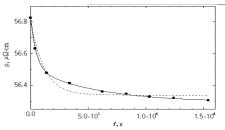


Рис. 3. Зависимость остаточного электросопротивления ρ от t для LuH_{0,180} при 180,2 К (штриховая кривая соответствует модели с одним τ , а сплошная — с двумя τ_1 и τ_2 ; • — экспериментальные точки [5]).

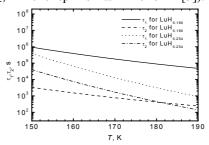


Рис. 4. Зависимость времен релаксации τ_1 и τ_2 от T, аппроксимированная по Аррениусу, для Lu–H. Для вычислений использованы результаты обработки данных эксперимента [5] в рамках модели второго порядка.

тельности же смысл этих параметров более глубокий. Характеристика кинетики релаксации теплоемкости (несмотря даже на изотропию самой скалярной величины C_p) и остаточного электросопротивления (вслед за ближним порядком) Lu—H в целом двумя временами релаксации может быть обусловлена различием вероятностей прыжков атомов внедрения H вдоль выделенных направлений осей (a_0) » и (c_0) » ГПУ-решетки монокристалла Lu или любого кристаллита в поликристалле Lu.

Благодарность

Один из соавторов (Р.Т.М.) благодарит НАТО за частичную поддержку Грантом RIG 981326.

Литература

- 1. Khachaturyan AG. Theory of Structural Transformations In Solids. New York: John Wiley & Sons, 1983.
- 2. Krivoglaz MA. Diffuse Scattering of X-Rays and Neutrons by Fluctuations. Berlin: Springer, 1996.
- 3. Bley F, Amilius Z, Lefebvre S. Wave vector dependent kinetics of short-range ordering in ⁶²Ni_{0.765}Fe_{0.235}, studied by neutron diffuse scattering. Acta metall., 1988; **36**: 1643–1652.
- 4. Vajda P. Hydrogen in rare earth metals, including RH_{2+x} -phases. In: Gschneidner KA, Jr, editor. Handbook on the Physics and Chemistry of Rare Earths. Vol. **20**. Amsterdam: North-Holland, 1995.
- 5. Jung P, Lässer R. Short-range ordering of hydrogen isotopes in lutetium. J. Alloys & Compounds, 1992; **190**: 25–29.
- 6. Swenson CA. Heat capacities (1 to 108 K) and linear thermal expansivities (1 to 300 K) of LuH $_{0.148}$ single crystals: Thermal relaxation effects and pairing transition. Phys. Rev. B, 1999; **59**: 14926–14935.