INTERACTION OF THE ALLOY BASED ON SmCo₅ COMPOUND WITH HYDROGEN AT PRESSURES 0.1-0.66 MPa

Bulyk I.I.*, Markovych V.I.., Trostianchyn A.M.

Karpenko Physico-Mechanical Institute NAS of Ukraine, 5, Naukova St., 79601, L'viv, Ukraine

* E-nouma: bulyk@ipm.lviv.ua.

Introduction

Hydrogen treatment of materials has wide practical application [1]. It has impotent place at the production of magnets based on R₂Fe₁₄B alloy, where this treatment are used for both the production of powders [2], and the change of structure by means of hydrogenation, disproportionation, desorption, recombination (HDDR) [3]. The HDDR is also investigated in ferromagnetic alloys based on Sm-Co system, but in this case it is necessary high hydrogen pressures (3...5 MPa) [4,5]. A low hydrogen pressure is more favoured from the practical viewpoint. The interaction of KC37 commercial alloy with hydrogen at pressures 0.1...0.66 MPa and temperatures up to 960 °C was studied for the estimation of possibility of phase transformations in Sm-Co alloys under hydrogen at relatively low pressures. Differential thermal (DTA) and X-ray phase analyses were used. The initial alloy contains SmCo₅ ferromagnetic phase and impurity SmCo₃ phase. The KC37-H₂ system was heated from room temperature and cooled to this temperature in hydrogen at initial pressure 0.1 MPa to 885 °C; 0.2 MPa to 890 °C; 0.3 MPa to 925 °C; 0.4 MPa to 860 °C; 0.5 MPa to 200, 500, 600, 900 and 960 °C; 0.64 and 0.66 MPa to 960 °C (table).

Results and discussion

X-ray phase analysis of interaction products in KC37-H₂ system. The impurity SmCo₃ phase decomposes into an unknown phase after heating of the alloy in hydrogen at P_{H_2} =0.1 MPa (table). The SmCo₅ ferromagnetic phase continues stable at P_{H_2} =0.2 MPa (table). The SmH_x hydride was observed among disproportionation products of SmCo₃ at these conditions. In our assumption, the amorphous or nanodimension cobalt is also presented in the sample and gives increased phone in the XRD pattern in the angle 50...60°. The SmH_x and Sm₂Co₁₇ were observed in the composition of sample in the place of SmCo₃ at P_{H_2} =0.3 MPa (Fig. a). The analogous phase composition was found at P_{H_2} =0.4 MPa (Fig. b). However, the amount of SmH_x and Sm₂Co₁₇ phases increases at these conditions, while the relatively amount of SmCo₅ decreases. The following increase of pressure to P_{H_2} =0.5 MPa leads to the decrease of relatively

amount of SmH_x and Sm_2Co_{17} phases (Fig. c) comparatively with the above sample. The holding of sample for 5 h at the above conditions results in the full transformation of Sm_2Co_{17} into $SmCo_5$ (Fig d). Besides, a small amount of SmH_x and Co is presented (table).

The analogous composition of interaction products was found at P_{H_2} =0.64 and 0.66 MPa (table).

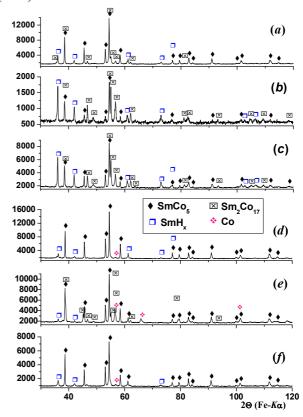


Figure. XRD patterns of the interaction products in KC37-H₂ system: $\boldsymbol{a} - 0.3$ MPa; $\boldsymbol{b} - 0.4$ MPa; $\boldsymbol{c} - 0.5$ MPa, $T_{\text{max}} = 900$ °C, $\tau = 0$ h.; $\boldsymbol{d} - 0.5$ MPa, $T_{\text{max}} = 900$ °C, $\tau = 5$ год.; $\boldsymbol{e} - 0.64$ MPa, $T_{\text{max}} = 950$ °C, $\tau = 0.5$ h.

In the accordance to SmCo₅, a small amount of SmH_x hydride and Sm₂Co₁₇ was observed after heating of the sample in hydrogen without holding (Fig. e). The holding for 0.5 h at P_{H_2} =0.66 MPa leads to the formation of the same phase composition as after

Table. Conditions and interaction products in $KC37-H_2$ system

Treatment conditions		Phase	Lattice constants, nm		
P, MPa	T_{max} , °C	<i>T</i> , h		а	С
Initial alloy		SmCo ₅	0.4980(3)	0.3954(3)	
			SmCo ₃	0.5006(2)	2.4210(7)
0.1	885		SmCo ₅	0.5007(1)	0.3968(1)
			?	,	. ,
0.2	890		$SmCo_5$	0.50061(6)	0.39661(7)
			SmH_x	0.5404(6)	
0.3	925		$SmCo_5$	0.50024(4)	0.39702(5)
			SmH_x	0.5395(1)	
			γ-Sm ₂ Co ₁₇	0.8467(2)	1.2219(5)
0.4	860		$SmCo_5$	0.5003(2)	0.3969(2)
			γ-Sm ₂ Co ₁₇	0.8464(2)	1.2227(4)
			SmH_x	0.5405(1)	
0.5	200		SmCo ₅	0.50035(7)	0.39674(8)
0.5	500		SmCo ₅	0.50033(6)	0.39659(7)
0.5	600		SmCo ₅	0.5007(2)	0.3971(2)
0.5	000		-	0.5398(2)	0.39/1(2)
			SmH_x		
0.5	895	0	Co	0.3544(1)	0.20712(7)
0.5	895	0	SmCo ₅	0.49999(4)	0.39713(7)
			γ-Sm ₂ Co ₁₇	0.8453(2)	1.2225(4)
0.5	000	_	SmH _x	0.54015(7)	0.20704(0)
0.5	900	5	SmCo ₅	0.50073(9)	0.39704(9)
0.5	0.60	1	SmH _x	0.5394(6)	0.20(0(2)
0.5	960	1	SmCo ₅	0.5002(2)	0.3960(2)
			γ -Sm ₂ Co ₁₇	0.8458(3)	1.2203(7)
			β-Co ?	0.3542(1)	
0.5	960	2	SmCo ₅	0.4998(1)	0.3969(2)
0.0	, 00	_	γ -Sm ₂ Co ₁₇	0.8462(4)	1.2209(7)
			Co	0.3542(2)	1.2205(1)
			?	1100 1=(=)	
0.5	960	5	SmCo ₅	0.5001(2)	0.3968(2)
	, , ,		γ-Sm ₂ Co ₁₇	0.8462(4)	1.2209(7)
			Co	0.3541(2)	
			?	()	
0.64	950	0	SmCo ₅	0.50033(4)	0.39690(5)
			γ -Sm ₂ Co ₁₇	0.8456(3)	1.2226(7)
			SmH _x	0.5399(2)	(-)
			Co	0.3541(2)	
			?		
0.66	960	0.5	SmCo ₅	0.50063(3)	0.39683(3)
			SmH_x	0.5406(2)	
			Co	_ `	
the heating at $P_{-}=0.5 \mathrm{MHz}$ with holding for 5 h					

the heating at P_{H_2} =0,5 M Π a with holding for 5 h (Fig. f).

It was determined, that phase composition in alloy-hydrogen system at $P_{H_{\gamma}}$ =0.5 MPa depends on

heating temperature. Three phase transformations were observed by means of DTA: two endothermic at 250 and 775 °C and exothermic at 560 °C. The phase with CaCu₅-type structure were found among disproportionation products at 200 and 500 °C by means of X-ray phase analysis (table), though the both samples contain also unknown phase(s). Theirs amount decreases with the rise of temperature. The mixture of SmH_x and Co with the remains of SmCo₅ ferromagnetic phase was obtained at 600 °C (table). The increase of interaction temperature to 960 °C with holding for 1, 2, 5 h results in the formation of different products composition than after reaction at 900 °C (P_{H_2} =0.5 MPa). First difference: samarium hydride decomposes at these conditions (table). Second: the composition of interaction products is the same after holding for 1, 2 and 5 h: SmCo₅, Sm₂Co₁₇ and Co and quantitative correlation between phase's remains without change.

Conclusions

The changes of the composition of the alloy, which contains $SmCo_5$ and $SmCo_3$, in hydrogen at pressure 0.1-0.66 MPa and temperature up to 960 °C were determined. The interaction products are: SmH_x , Co, $SmCo_5$, Sm_2Co_{17} and unknown phases. The composition of interaction products depends on initial hydrogen pressure, temperature and holding time at the highest temperature. The $SmCo_3$ phase decomposes in hydrogen at $P_{H_2} \ge 0.1$ MPa.

References

- 1. V.A.Goltsov. Fundamentals of hydrogen treatment of materials. *In*: Progress in Hydrogen Treatment of Materials, Ed. by V.A. Goltsov, Donetsk –Coral Gables: Kassiopeya, 2001. P. 3-36.
- 2. I.R.Harris. The potential of hydrogen in permanent magnet production // J. Less-Common Metals, 131(1987) –P. 245-262.
- 3. Cannesan N., Harris I.R. Aspects of NdFeB HDDR powders: fundamentals and processing // Bonded magnets, NATO Science series: II. Mathematics, Physics and Chemistry. 2002. –V. 118, Ed. by G.C.Hadjipanayis, –P. 13–36.
- 4. A. Handstein, M. Kubis, 0. Gutfleisch, B. Gebel, K.-H. Muller. HDDR of Sm-Co alloys using high hydrogen pressures // Journal of Magnetism and Magnetic Materials 192 (1999) –P. 73-76.
- 5. I.I. Bulyk, V.V. Panasyuk, A.M. Trostianchyn. Features of the HDDR process in alloys based on the SmCo₅ compound // J. Alloys and Compounds, 2004. V. 379 №1–2. –P. 154-160.