РАВНОВЕСНЫЕ ДАВЛЕНИЯ ДЕЙТЕРИЯ НАД СПЛАВАМИ $Zr_{1-x}Ce_xMn_2\ (x=0,1-0,3)$

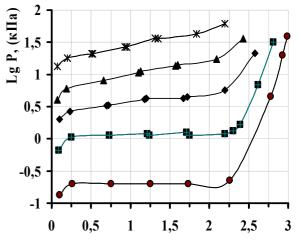
<u>Демина С.В.*</u>, Глаголев М.В., Веденеев А.И.

Российский Федеральный Ядерный Центр - Всероссийский Научно - Исследовательский Институт Экспериментальной Физики (РФЯЦ-ВНИИЭФ),

607190 Саров, Нижегородской обл., Россия

* E-mail: Demina@dep19.vniief.ru

Введение

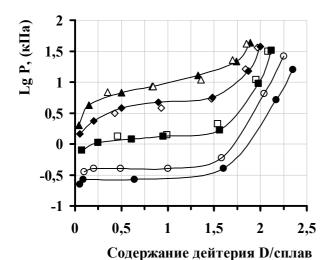

Интерметаллические соединения переходных металлов, образующие гидридные фазы с высоким содержанием водорода, часто используются для аккумулирования изотопов водорода. Гидриды интерметаллического соединения ZrMn₂ характеризуются относительно высокой стабильностью, чтобы их можно было использовать в качестве аккумулирования водорода [1, 2]. Известно, что добавки небольших количеств легирующих компонентов в ИМС приблизительно линейно изменяют термодинамические характеристики соответствующих гидридов [3]. Замещение циркония другими элементами позволяет на несколько порядков повысить давление диссоциации гидридов ZrMn₂ до значений, приемлемых для практического использования [3, 4]. В работе [4] было проведено исследование гидридов ZrMn₂, легированного церием. Были получены изотермы равновесных давлений над гидридами сплавов $Zr_{1-x}Ce_xMn_2$ (x=0,2-0,3) в температурном интервале 100 - 160 ⁰C. Целью настоящей работы являлось проведение измерений равновесных давлений десорбции в системах Zr_{1-x}Ce_xMn₂ $(x=0,1-0,3) - D_2$, H_2 в температурном интервале 22-130°C, а также оценка изотопного эффекта равновесных давлений над соответствующими гидридами и дейтеридами сплавов.

Результаты и обсуждение

В результате проведенной работы измерены равновесные давления в системах $Zr_{1-x}Ce_xMn_2$ (x=0,1-0,3) — D_2 . Изотермы дейтеридов исследованных сплавов характеризуются наличием плато равновесных давлений. На рисунке 1 представлены изотермы десорбции дейтерида сплава $Zr_{0.9}Ce_{0.1}Mn_2$ в температурном интервале 22^0C-130^0C . Аналогичные по форме изотермы десорбции были получены и для сплавов $Zr_{1-x}Ce_xMn_2$ (x=0,2; 0,3). По мере замещения циркония церием сорбционная емкость сплава уменьшается, соответственно уменьшается и протяженность области плато.

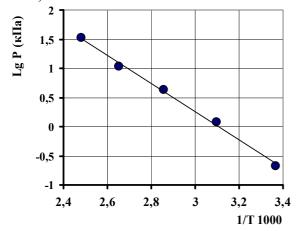
Для сплава $Zr_{0,9}Ce_{0,1}Mn_2$ сорбционная емкость по дейтерию на конце плато составляет

при комнатной температуре $\approx 122~{\rm cm}^3/{\rm r}$. Для сплава $Zr_{0,7}Ce_{0,3}Mn_2$ указанная величина на $\approx 32~\%$ меньше. Величины равновесных давлений над дейтеридами сплавов в области плато возрастают по мере увеличения содержания в исходном сплаве церия. Значение равновесного давления на середине плато для сплава $Zr_{0,9}Ce_{0,1}Mn_2$ при комнатной температуре составляет $\sim 0,2$ кПа ($\approx 1,5$ ммрт.ст.), что в ≈ 6 раз меньше, чем для сплава $Zr_{0,7}Ce_{0,3}Mn_2$


Содержание дейтерия, D/сплав

• -22° C; -50° C; • -77° C; -100° C; * -130° C

Рис.1 Изотермы равновесного давления десорбции в системе $Zr_{0.9}Ce_{0.1}Mn_2$ — D_2


Для сплава $Zr_{0.8}Ce_{0.2}Mn_2$ измерены изотермы десорбции равновесного давления над его гидридом и дейтеридом. Полученные изотермы представлены на рис. 2. Из представленных изотерм следует, что изотопный эффект в исследуемой системе характеризуется незначительной величиной. Для повышенных температур различия в значениях равновесных давлений над гидридами и дейтеридами сплавов находятся в пределах разброса экспериментальных данных.

На основе измеренных изотерм построены зависимости равновесных давлений десорбции от обратной температуры.

• -22^{0} C; ■ -50^{0} C; • -77^{0} C; ▲ -100^{0} C Рис.2 Изотермы равновесного давления десорбции в системах $Zr_{0.8}Ce_{0.2}Mn_{2}$ — D_{2} (закрытые символы); $Zr_{0.8}Ce_{0.2}Mn_{2}$ — H_{2} (открытые символы).

На рис. 3 приведена такая зависимость для сплава $Zr_{0.9}Ce_{0.1}Mn_2$ при содержании дейтерия в сплаве D/моль сплава $\approx 1,25$ (середина плато).

Рис. 3 Зависимость равновесного давления дейтерия над сплавом $Zr_{0,9}Ce_{0,1}Mn_2$ от температуры.

Зависимости равновесных давлений десорбции дейтеридов сплавов $Zr_{1-x}Ce_xMn_2$ (x=0,1-0,3) от температуры имеют вид:

 $lgP(\kappa\Pi a)$ =7,51-2418,5/T, для x=0,1; $lgP(\kappa\Pi a)$ =7,09-2267,4/T, для x=0,2; $lgP(\kappa\Pi a)$ =5,86-1713,9/T, для x=0,3.

Из полученных зависимостей были рассчитаны изменения энтальпии ΔH и энтропии ΔS процессов разложения дейтеридов сплавов $Zr_{1-x}Ce_xMn_2$ (x=0,1-0,3). Значения энтальпий разложения приведены в таблице 1.

Согласно данным работы [4] значения энтальпии разложения гидрида сплава $Zr_{0.8}Ce_{0.2}Mn_2$ составляет 43,8 кДж/моль, что согласуется со значением, представленным в таблице1.

Таблица-1. Изменение энтальпий разложения дейтеридов сплавов $Zr_{1-x}Ce_xMn_2$ (x=0,1-0,3)

Система	ΔΗ, кДж/моль
$Zr_{0,9}Ce_{0,1}Mn_2 - D_2$	46,3
$Zr_{0,8}Ce_{0,2}Mn_2$ - D_2	43,4
$Zr_{0,7}Ce_{0,3} Mn_2 - D_2$	32.8

Значения равновесных давлений, измеренные в настоящей работе при температурах 100, 130°С в два раза меньше значений, полученных авторами работы [4]. Различия могли возникнуть вследствие использования разных методик проведения измерений и способов приготовления сплавов.

Заключение

- 1. В интервале температур $(21-130)^{0}$ С построены изотермы равновесных давлений дейтерия над сплавами $Zr_{1-x}Ce_xMn_2(x=0,1-0,3)$. Изотермы всех исследованных систем характеризуются наличием плато. Протяженность области плато при комнатной температуре составляет (83-122)см³/г. Значение равновесного давления десорбции для дейтеридов сплавов на середине плато при комнатной температуре находятся в пределах 0,27-1,33 кПа (2-10 мм рт.ст).
- **2.** Значения энтальпий разложения дейтеридов сплавов $Zr_{1-x}Ce_xMn_2$ (x=0,1-0,3) находятся в пределах (46,3-32,8) кДж/моль.
- **3.** Для интервала температур $(21 130)^0$ С отличия в значениях равновесных давлений изотопов водорода при взаимодействии дейтерия и протия со сплавом $Zr_{0,8}Ce_{0,2}Mn_2$ находятся в пределах точности измерения давлений.

Литература

- 1. R.M.van Essen, K.H.J. Bushov. Composition and Hydrogen Absorption of C-14 type Zr-Mn compounds. Mat. Res. Bull. 1980; 15: 1149-1155.
- **2.** D. Shaltiel, I. Jacob, D. Davidov. Hydrogen Absorption and Desorption Properties of AB₂. Laves-Phase Pseudobinary Compounds. J. Less-Common Metals 1977; 53: 117-131.
- H. Fugii, F. Pourarian, V.K. Sinha, W.E. Wallace. Magnetic, Crystallographyc and Hydrogen Storage Characteristics of Zr_{1-x}Ti_xMn₂ Hydrides. J. Phys. Chem. 1981
- **4.** F. Pourarian, W.E. Wallace. Hydride Formation in Zr_{1-x}Ce_xMn₂ (x=0,2-0,3). J. of the Less-Common Metals 1983; 91: 223-227.