СИММЕТРИЯ ПОДРЕШЕТКИ ВОДОРОДА В ТРИГИДРИДЕ ИТТРИЯ

<u>Федотов В.К.</u>* Антонов В.Е., Башкин И.О., Хансен Т. ⁽¹⁾, Натканец И. ⁽²⁾, Заварицкая В.А.

Институт физики твёрдого тела РАН, 142432 Черноголовка Московской обл., Россия ⁽¹⁾ Институт Лауэ-Ланжевена, 38042 Гренобль, Франция

(2) Лаборатория нейтронной физики им. И.М. Франка, Объединенный институт ядерных исследований, 141980 Дубна Московской обл., Россия

* Факс: 7 096 524 9701, E-mail: fedotov@issp.ac.ru

Введение

Исследования метолом порошковой нейтронной дифракции показывают [1-3], что тригидрид иттрия изоструктурен с НоН₃. Элементарная ячейка HoH_3 , простр. гр. $P\overline{3}c1$, является расширением $(\sqrt{3} \times \sqrt{3})R30^{\circ}$ для ГПУ ячейки в базисной плоскости [4]. Две трети атомов Η занимают искаженные тераэдрические (t) междоузлия. Оставшаяся треть атомов Н занимает позиции тригональной симметрии, так называемые m-позиции, расположенные базисных металлических В плоскостях и вблизи них. Междоузлия т-типа рассматривать октапоры, как смещенные в сторону базисных плоскостей.

Вместе с тем, недавние ab initio расчеты продемонстрировали, что существенные особенности электронной зонной структуры [5] и колебательного спектра [6,7] УН3 нельзя объяснить в рамках структурной симметрии $P\overline{3}c1$. Вместо этого, в [6,7] были предложены две другие структуры, $P6_3cm$ and $P6_3$. Эти новые структуры с "нарушенной симметрией" лучше подходят для объяснения результатов НРН [8,9], а также ЯМР [10,11], Рамановских и ИК [12,13] исследований УН₃. Все три структуры, предложенные для тригидрида характеризуются корреляциями в расположении атомов Н_t и Н_m, приводящими к утроению исходной ГПУ ячейки.

Расчеты [6,7] возродили дискуссию о кристаллической структуре YH_3 . В настоящем сообщении приводятся результаты исследований YH_3 и YD_3 методами нейтронной дифракции (НД) и неупругого рассеяния нейтронов (НРН), предпринятых для выяснения двух вопросов:

- В какой степени метод порошковой нейтронной дифракции способен отличить структуры P6₃cm and P6₃ с "нарушенной симметрией" от структуры P3̄c1 типа HoH₃;
- Есть ли возможность согласовать результаты НД исследований с требованиями к симметрии структуры YH₃, вытекающими из результатов НРН, ЯМР и других экспериментов.

Результаты и обсуждение

Порошковые образцы YH_3 и YD_3 были изучены методом НД с хорошей статистикой на светосильном дифрактометре D20 в ИЛЛ, Гренобль. Образец YH_3 был также исследован методом НРН в интервале переданных энергий нейтронов 4–300 мэВ при 20 К на времяпролетном спектометре NERA-PR в ОИЯИ, Дубна.

На Рис. 1 показана нейтронограмма YD_3 (точки), наложенная на профиль, рассчитанный для структуры $P6_3$ (сплошная линия), а также три кривые разностей между экспериментальным спектром и профилями, рассчитанными при значениях структурных параметров из Табл. 1.

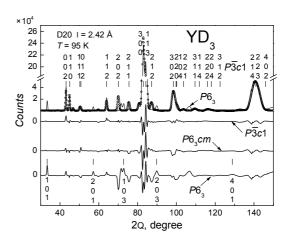


Рис. 1. Нейтронограмма образца YD_3 (точки) и результаты ее профильного анализа (линии). Значения структурных параметров даны в Табл. 1. Индексы Миллера для линий структуры $P\overline{3}c1$ указаны в верхней части рисунка, индексы дополнительных линий структуры $P6_3$ — в нижней части.

Как видно из Рис. 1, структура $P6_3$ качественно непригодна для моделирования нейтронограммы, поскольку она дает серию дополнительных и довольно интенсивных линий (101), (201), (103) и т.д., отсутствующих в эксперименте. Результаты моделирования структурой $P6_3cm$ противоречат не экспериментальным данным, но достигаемый уровень подгонки оказывается заметно ниже, чем в случае структуры $P\overline{3}c1$. Таким образом, в согласии с [1-3], наши исследования показывают,

что нейтронная дифракция допускает для YH_3 только структуру типа HoH_3 .

Таблица 1. Позиции (*xyz*) атомов в YH₃, полученные при моделировании структурами $P\overline{3}c1$, $P6_3$ и $P6_3cm$, и смещения (Δ_{xyz}) этих позиций в структурах $P6_3$ и $P6_3cm$ по отношению к позициям в структуре $P\overline{3}c1$.

	$P\overline{3}c1$	P6 ₃		P6 ₃ cm	
	"0"	xyz	Δ_{xyz}	xyz	Δ_{xyz}
Y	6 <i>f</i>	6 <i>c</i>		6 <i>c</i>	
x	0.663	0.667	_	0.669	-
у		-0.003	_		_
Z		0.250	_	0.250	_
$H_1(t)$	12g	6 <i>c</i>		6 <i>c</i>	
x	0.348	0.345	0.003	0.306	0.042
y	0.025	-0.015	0.040		0.025
Z	0.093	0.093	_	0.091	_
$H_1(t)$		6 <i>c</i>		6 <i>c</i>	
x		-0.308	0.040	-0.354	-0.006
y		-0.042	-0.017		0.025
Z		-0.093	_	-0.092	
$H_1(m)$	2 <i>a</i>	2 <i>a</i>		2 <i>a</i>	
x			_		_
У			_		-
\boldsymbol{z}		-0.316	0.066	0.324	0.074
$H_2(m)$	4 <i>d</i>	2b		4 <i>b</i>	
x			_		-
У			_		-
Z	0.181	0.184	0.003	0.200	0.019
$H_3(m)$		2b			
x			_		
У			_		
Z		-0.216	0.035		

В то же время, *ab initio* расчеты [6,7] показывают, что YH_3 со структурой HoH_3 должен быть неустойчив, и "мягкая мода" вытесняет атомы H_m из иттриевых плоскостей. Именно так образуются структуры с нарушенной симметрией (см. Табл. 1).

Это противоречие можно устранить, предположив, что локальная симметрия расположения водорода в YH_3 ниже, чем симметрия $P\overline{3}c1$ дальнего порядка, определяемая такими методами, как нейтронная дифракция. Наличие больших смещений водорода, скоррелированных на масштабе ближнего порядка, согласуется с имеющимися данными по нейтронной дифракции и объясняет аномально большие значения факторов Дебая-Валлера, получающиеся при расположениии атомов водорода в структуре $P\overline{3}c1$.

Это также объясняет, почему свойства YH_3 , измеренные методами ЯМР [10,11], а также НРН [8,9], Рамановской и ИК [12,13] спектроскопии, лучше описываются в $P6_3$ структуре [6,7], чем в более симметричной структуре $P\overline{3}c1$: дело в том, что эти методы, в

основном, чувствительны к локальному окружению рассеивающего атома.

Более того, отсутствие дальнего порядка в расположении водорода предполагает, что такие свойства, как колебательный спектр водорода, лучше описываться некоторой суперпозицией спектров, рассчитанных для разнообразных структур c "нарушенной симметрией". Это иллюстрируется рисунком 2, где усреднение спектров Р63ст и Р63 дает лучшее воспроизведение экспериментального спектра в окрестности 57 м $_{3}$ В, чем спектр $P6_{3}$, а в окрестности 124 мэВ – чем спектр $P6_3cm$.

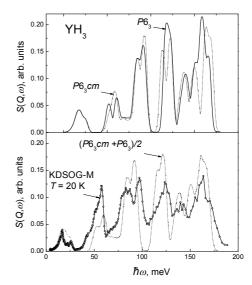


Рис. 2. Динамический структурный фактор $S(Q,\omega)$ для порошка YH_3 при T=20 K как функция потери энергии $\hbar\omega$ неупруго рассеянными нейтронами (точки) и плотности фононных состояний (пунктирные линии), рассчитанные [6,7] для структур $P6_3cm$ и $P6_3$ с нарушенной симметрией (верхняя часть рисунка), и их полусумма (нижняя часть).

Литература

- 1 N.F. Miron et al. Sov. Phys. Cryst. 1972;17:342.
- 2 T.J. Udovic et al. J. Phys. Chem. Sol. 1996;57:423.
- 3 T.J. Udovic et al. Phys. Rev B 1999;59:1852.
- 4 M. Mannsmann, W.E. Wallace, J. Phys. (Paris) 1964;25:454.
- 5 P.J. Kelly et al. Phys. Rev. Lett. 1997;78:1315.
- 6 P. van Gelderen et al. Phys. Rev. B 2001;63:100301.
- 7 P. Van Gelderen et al. Phys. Rev B 2003;68:094302.
- 8 T.J. Udovic et al., in: Hydrogen in Semiconductors and Metals, ed. by N.N. Nickel et al., MRS Symp. Proceed. No. 513 (MRS, Pittsburgh, 1998), p. 197.
- 9 T.J. Udovic et al. Phys. Rev. B 2000;61:12701.
- 10 J.J. Balbach et al. Phys. Rev. B 1998;58:14823
- 11 O.J. Zogal et al. Phys. Rev.B 2001;64:214110.
- 12 H. Kierey et al. Phys. Rev. B 2001;63:134109.
- 13 J. Schoenes et al. J. Alloys Comp. 2003; 356-357:211.