ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЦЕССА ДЕСОЛЬВАТАЦИИ ТЕТРАГИДРОФУРАНАТОВ БОРОГИДРИДОВ ЛАНТАНИДОВ

Гафуров Б.А.⁽¹⁾, **Мирсаидов И.У.** ⁽²⁾, <u>Бадалов А.Б.</u> ^{(2)*}, **Курбонбеков А.** ⁽¹⁾ Институт химии АН Республики Таджикистан, ул. Айни-299/2,г. Душанбе ² Таджикский технический университет,

пр. акад. Раджабовых -10, г. Душанбе * Факс: (992 372) 21 55 48 E-mail: ilhom@ac.tajik.net

При существующих способах синтеза борогидриды лантанидов образуются сольватированном виде в среде гидрофураната (ТГФ) Выявленные возможности, условии десольватации и получение несольватированных борогидридов лантанидов имеют определённый научнопрактический интерес.

В данной работе приведены результаты исследования процесса десольватации тристетрагидрофуранатов борогидридов лантанидов — Ln(BH₄)₃ 3TГФ, где Ln-La, Nd, Sm, Er, Gd, Yb и Lu. Исследование проведено методом тензиметрии с мембранным нульманометром. Процесс протекает медленно во времени. Время достижения равновесного значения давлении в изотермических условиях составляет 150-160 часов.

Кривая зависимости давления газа от температуры (барограмма), приведённая в

виде
$$lgp=f\left(\frac{1}{T}\right)$$
 состоит из двух Пересе-

кающихся прямых линий, соответствующих отдельным ступеням процесса десольватации. Уравнений барограмм и интервал температур протекания ступней процесса приведены в табл. 1

По результатам количественных тензиметрических измерений установлено, что на первой стадии десольватируется один моль $T\Gamma\Phi$, а остальные две моли - при второй стадии.

На оснований уравнений барограмм рассчитаны термодинамические характеристики обеих ступеней прцесса десольватации Ln $(BH_4)_33$ $T\Gamma\Phi$ (табл.2). Эти данные позволили полуэмпирическим методом учитывающий влияние числа f-электронов, вклад спиновых (S) и орбитальных лвижения ионов моментов лантанидов рассчитать термодинамические характеристики ступеней процесса десольватации всего сольватированных борогидридов лантанидов (табл. 2).

Таблица 1 Значения коэффициентов уравнения процесса десольватации Ln (BH₄)₃3 ТГФ

Соедин ения	$\lg P_{TT\phi} = B - \frac{A}{T} \cdot 10^3$										
	пер	эвая ст	упень	вторая ступень							
	A	В	ΔT	A	В	ΔT					
La (ВН ₄) ₃ 3ТГФ	0.8	4.4	300- 380	3.30	10. 66	380- 395					
Nd(BH ₄) ₃ 3TГФ	0.9 8	4.2 8	300- 370	4.58	14. 03	370- 390					
$Sm(BH_4)_3$ $3T\Gamma\Phi$	0.7 4	4.3	300- 373	2.66	9.4	373- 390					
Gd(BH ₄) ₃ 3TГФ	0.8	4.5 7	300- 369	2.13	8.1	369- 385					
Er (ВН ₄) ₃ 3ТГФ	0.9 4	4.5	300- 360	3.37	11. 30	360- 380					
Yb (ВН ₄) ₃ 3ТГФ	1.1 9	5.6 1	300- 363	3.49	11. 64	363- 380					
Lu(BH ₄) ₃ 3TГФ	1.3 7	5.8	300- 340	1.88	7.3	340- 375					

Литература

- 1. Полуэктов Н.С., Мешкова С.Б., Коровин Ю.В., Оксиненко И.И. //Докл. АН СССР, 1982, т.266,№5, с.1157.
- 2. Мешкова С.Б., Полуэктов Н.С., Топилова З.М., Донилкович М.М. //Коорд. химия, 1986, т.12, N24, c.481.

Таблица 2 Термодинамические характеристики ступеней процесса десольватации Ln (BH₄) $_3$ ЗТГФ

		первая	ступень		вторая ступень			
соединение	ΔH^0 _{Т.,} кДЖ \cdot моль $^{-1}$		$\Delta S^0{}_{T,\cdot}$ Дж \cdot моль $^{-1}$ -		$\Delta H^0_{T,\kappa}$ к \mathcal{J} Ж \cdot моль $^{-1}$		$\Delta S^0_{T.}$ Дж \cdot моль	
	Экспериме нт	расчёт	Эксперим ент	расчёт	Экспериме нт	расчёт	Эксперим ент	расчё т
La(BH ₄) ₃ 3TГФ	15.1	15.1	28.9	28.9	124.3	124.3	293.3	293.3
Се(ВН ₄) ₃ 3ТГФ	-	17.1	-	31.5	-	117.8	-	285.7
Pr(BH ₄) ₃ 3TΓΦ	-	18.1	-	32.3	-	113.0	-	277.8
Nd(BH ₄) ₃ 3TΓΦ	18.8	18.5	26.8	32.8	108.4	108.4	267.4	267.4
Рm(BH ₄) ₃ 3ТГФ	-	18.5	-	33.1	-	103.9	-	254.6
Sm(BH ₄) ₃ 3TГФ	17.6	17.8	38.1	33.2	75.7	99.6	185.8	239.4
Eu(BH ₄) ₃ 3TΓΦ	-	15.6	-	30.8	-	88.9	-	206.6
Gd(BH ₄) ₃ 3TΓΦ	14.6	14.6	31.0	-	92.9	92.9	203.8	203.8
Tb(BH ₄) ₃ 3TΓΦ	-	15.6	-	30.8	-	102.2	-	235.9
Dy(ВН ₄) ₃ 3ТГФ	-	16.3	-	30.5	-	109.9	-	261.7
Но(ВН ₄) ₃ 3ТГФ	-	17.1	-	31.7	-	114.5	-	278.6
Er(BH ₄) ₃ 3TΓΦ	1.0	18.0	31.4	34.5	129.3	116.0	32.2	286.9
$Tm(BH_4)_33T\Gamma\Phi$	-	19.0	-	38.7	-	114.5	-	286.6
Yb(BH ₄) ₃ 3ТГФ	20.5	19.5	46.0	43.2	103.3	106.8	259.8	269.7
Lu(BH ₄) ₃ 3TГФ	20.9	20.9	50.2	50.2	103.7	103.7	261.9	261.9