THERMODYNAMIC PROPERTIES OF DESOLVATION PROCESS OF TETRAHYDROFURANATE OF LANTHANIDES BOROHYDRIDES

Gafurov B.A.⁽¹⁾, Mirsaidov I.U. ⁽²⁾, <u>Badalov A.B</u>.⁽²⁾, Kurbonbekov A. ⁽¹⁾

Under existing methods of synthesis the lanthanides borohydrides form in solvated kind at tetrahydrofuranate (THF) medium. Discovered opportunities of desolvation conditions and obtaining of non-solvated lanthanides borohydrides are of scientifically-applied interest.

In the present work investigation results of desolvation tristetrahydrofuranate of lanthanides borohydrides process—Ln(BH₄)₃ 3 THF, where Ln-La, Nd, Sm, Er, Gd, Yb and Lu are presented. The investigation is carried out by tensimetery method with membranous zero pressure-gauge. The process runs slowly in time. The time for achieving equilibrium value of pressure in isothermal condition is 150-160 hours.

The curve of gas pressure dependence from temperature (barogram), presented as

$$lgp=f\left(\frac{1}{T}\right)$$
 consist of two crossing straight lines,

proper to separate stages of desolvation process.

Equation of barograms and temperature interval of process stage processing are presented at table 1.

According to the results of quantitative tensimetric measuring it is determined that on first stage one mole of THF is desolvated, and other two moles during the second stage.

On the basis of barogram equation, the thermodynamic properties of both stages of desolvation process Ln $(BH_4)_3$ 3 THF (table.2) are calculated. These data permitted by semi-empirical method [1,2], considering the influence of f-electrons number, contribution of spin (S) and orbital (L) moments of lanthanides ion motion to calculate thermodynamic properties of desolvation process stages of whole solvated lanthanide borohydrides range. (table 2).

Table 1. Coefficients of equation of desolvation process $Ln (BH_4)_3 THF$

Compou nd	$\lg P_{TT\Phi} = B - \frac{A}{T} \cdot 10^3$										
]	First st	age	Second stage							
	A	В	ΔT	A	В	ΔT					
La(BH ₄) ₃ 3 THF	0.8 1	4.4	300- 380	3.30	10. 66	380- 395					
Nd(BH ₄) ₃ 3 THF	0.9 8	4.2 8	300- 370	4.58	14. 03	370- 390					
Sm(BH ₄) ₃ 3 THF	0.7 4	4.3	300- 373	2.66	9.4	373- 390					
Gd(BH ₄) ₃ 3 THF	0.8 1	4.5 7	300- 369	2.13	8.1	369- 385					
Er (BH ₄) ₃ 3 THF	0.9 4	4.5 2	300- 360	3.37	11. 30	360- 380					
Yb (BH ₄) ₃ 3 THF	1.1 9	5.6 1	300- 363	3.49	11. 64	363- 380					
Lu(BH ₄) ₃ 3 THF	1.3 7	5.8 3	300- 340	1.88	7.3 3	340- 375					

References

- 1. Poluektov N.S., Meshkova S.B., Korovin Y.V., Oksinenko I.I. //Dokl. AN SSSR, 1982, v.266,№5, p.1157
- 2. Meshkova S.B., Poluektov N.S., Topilova Z.M., Donilkovich M.M. //Coord. khimiya, 1986, v.12, №4, p.481.

¹ Research Institute of Chemistry of Academy of Sciences of the Republic of Tajikistan, 299/2 Aini street, Dushanbe-city

² Tajik Technical University, academicians Rajabovs – 10 avenue, Dushanbe-city

* Fax: (992 372) 21 55 48 E-mail: ilhom@ac.tajik.net

Table 2 Thermodynamic properties of stages of desolvation process Ln (BH₄) $_3$ 3T $\Gamma\Phi$

		st stage		Second stage				
Compound	$\Delta H^0_{T,\kappa} \kappa J \cdot mole^{-1}$		$\Delta S^{0}_{T,,} J \cdot mole^{-1} - K^{-1}$		$\Delta H^{0}_{T.,k}$ $J \cdot mole^{-}$		$\Delta S^0{}_{T,} J \cdot $ моль $^{-1} - K^{-1}$	
	Experiment	Calcu lation	Experiment	Calculati on	Experime nt	Calcu lation	Experiment	Calcul ation
La(BH ₄) ₃ 3 THF	15.1	15.1	28.9	28.9	124.3	124.3	293.3	293.3
Ce(BH ₄) ₃ 3THF	-	17.1	-	31.5	-	117.8	-	285.7
Pr(BH ₄) ₃ 3 THF	-	18.1	-	32.3	-	113.0	-	277.8
Nd(BH ₄) ₃ 3THF	18.8	18.5	26.8	32.8	108.4	108.4	267.4	267.4
Pm(BH ₄) ₃ 3THF	-	18.5	-	33.1	-	103.9	-	254.6
Sm(BH ₄) ₃ 3THF	17.6	17.8	38.1	33.2	75.7	99.6	185.8	239.4
Eu(BH ₄) ₃ 3THF	-	15.6	-	30.8	-	88.9	-	206.6
Gd(BH ₄) ₃ 3THF	14.6	14.6	31.0	-	92.9	92.9	203.8	203.8
Tb(BH ₄) ₃ 3THF	-	15.6	-	30.8	-	102.2	-	235.9
Dy(BH ₄) ₃ 3THF	-	16.3	-	30.5	-	109.9	-	261.7
Ho(BH ₄) ₃ 3THF	-	17.1	-	31.7	-	114.5	-	278.6
Er(BH ₄) ₃ 3 THF	1.0	18.0	31.4	34.5	129.3	116.0	32.2	286.9
Tm(BH ₄) ₃ 3THF	-	19.0	-	38.7	-	114.5	-	286.6
Yb(BH ₄) ₃ 3THF	20.5	19.5	46.0	43.2	103.3	106.8	259.8	269.7
Lu(BH ₄) ₃ 3THF	20.9	20.9	50.2	50.2	103.7	103.7	261.9	261.9