STRUCTURE OF NbVC₀D_{2,3}, SYNTEZIED UNDER HIGH GASEOUS PRESSURE (UP TO 2000 ATM.)

<u>Lushnikov S.A.</u>, Glaskov V.P., (1) Somenkov V.A., (1) Verbetsky V.N.

Moscow State University, Chemistry Department, Leninsky Hills, 119992 Moscow, Russia (1)Russian Research Center «Kurchatov Institute», 123182 Moscow Russia E-mail:lushnikov@hydride.chem..msu.ru

Introduction

IMC AB_2 with Laves structure are promising materials for storage hydrogen. Under usual pressures (up to 100 atm.) hydride phases in AB_2 - H_2 system able to absorb until two mass percent of hydrogen. IMC NbVCo is unusual, the interaction with hydrogen doesn't occurred under low pressure (up to 100 atm.) and room temperature [1]. Using of high pressure of hydrogen (up to 2000 atm.) allowed to obtain hydride phase with amount hydrogen 3,0 H/IMC.

For determination of site hydrogen atoms in synthesized hydride neutron powder diffraction study has been performed.

Results and discussion

After synthesis of deuteride maximum amount of deuterium equally NbVCoD_{2,5} has been measured with thermodesorption method.

X-ray analyses of $NbVCoD_{2,5}$ has been revealed that obtained hydride phase remain structure of initial compound with increased lattice parameters.

Position of metal and deuterium atoms has been determined by X-ray and neutron powder diffraction.

Has been demonstrated that V and Co atoms distributed in B-component sublattice (2a, 6h) and deuterium atoms mainly occupied 24l and 12k sites. Deuterium amount obtained from neutron data NbVCoD_{2,3} is a bit less than in synthesized deuteride.

Summary

Using of high deuterium pressure allowed perform synthesis of deuteride $NbVCoD_{2,3}$ Obtained distribution of deuterium atoms revealed usual for Laves phases.

References

- 1. S.A.Lushnikov, V.N.Verbetsky. Interaction in NbVCo-H and NbVFe-H Systems under Hydrogen Pressure up to 2000 atm.//Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Proceedings of the NATO Advanced Research Workshop, held in Sudak, Crimea, Ukraine, September 14-20, 2003, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 172, ed. N.Vezirogly.
- 2. J.L.Souberoux, D.Fruchart, A.S. Biris. Structural studies of Laves phases $ZrVCo(V_{1-x}Cr_x)$ with 0 < x < 1 and their hydrides. J.Alloys and Compound. 1999.v. 293-295.p. 88-92.