## ВЛИЯНИЕ ГИДРИРОВАНИЯ НА МАГНИТНЫЕ И МАГНИТОУПРУГИЕ СВОЙСТВА МОНОКРИСТАЛЛА Lu<sub>2</sub>Fe<sub>17</sub>

# <u>Терешина Е.А.<sup>(1)</sup></u>\*, Терешина И.С.<sup>(2)</sup>, Никитин С.А.<sup>(1)</sup>, Андреев А.В.<sup>(3)</sup>, Iwasieczko W.<sup>(4)</sup>, Drulis H.<sup>(4)</sup>

(1) Физический факультет, МГУ им. М.В. Ломоносова, Москва, 119992, Россия (2) Институт металлургии и материаловедения им. А.А. Байкова РАН, Москва, 119991, Россия (3) Institute of Physics ASCR, 18221 Prague, Czech Republic

(4) Institute of Low Temperatures and Structure Research PAS, Wroclaw, 50-950, Poland \* Φακς: (095) 932-88-20 E-mail: janety@mail.ru

#### Введение

Отличительной особенностью интерметаллических соединений редкая-земля — железо со стехиометрической формулой  $R_2Fe_{17}$  является то, что их магнитные свойства сильно зависят от объема элементарной ячейки и межатомных расстояний. Это проявляется в значительном смещении температуры магнитного упорядочения  $T_C$  при действии гидростатического давления [1].

Среди соединений  $R_2$ Fe<sub>17</sub> соединение  $Lu_2$ Fe<sub>17</sub> является наименее изученным из-за сложности получения больших монокристаллов высокочистом состоянии. Было установлено [2], что небольшие неконтролируемые примеси приводят к подавлению антиферромагнитного состояния и смещают ТС в область высоких температур. Магнитные свойства монокристаллла Lu<sub>2</sub>Fe<sub>17</sub>, полученного высокочистых компонентов, обеспечивают более полной информацией о поведении железной подрешетки в соединениях  $R_2Fe_{17}$ . Целью настоящей работы является изучение влияния гидрирования на магнитные магнитоупругие монокристалла свойства  $Lu_2Fe_{17}$ .

#### Результаты и обсуждение

Интерметаллическое соединение кристаллизуется в разупорядоченном варианте гексагональной структуры типа Th<sub>2</sub>Ni<sub>17</sub> с пространственной группой P6<sub>3</sub>/mmc Известно [3], что соединения R<sub>2</sub>Fe<sub>17</sub> способны поглощать до 5 Н ат./ф. ед. И образуют Водород стабильные гидриды. занимает октаэдрические  $x \le 3$ позиции для (х - концентрация поглощенных атомов водорода).

На рис. 1 показана температурная зависимость намагниченности  $\sigma(T)$  соединения  $Lu_2Fe_{17}$ . На кривой  $\sigma(T)$  имеются некоторые особенности: 1) резкий спад намагниченности при  $T=180~\mathrm{K}$  (переход из ферромагнитного ( $\Phi$ M) в антиферромагнитное ( $\Phi$ M) состояние), сопровождаемый значительным гистерезисом; и 2) слабый максимум, типичный для перехода  $\Phi$ M- $\Pi$ M (парамагнетик) с

температурой Нееля  $T_N = 275~{\rm K}$ , который хорошо согласуется с литературными данными [4]. Гидрирование также приводит к подавлению АФМ и индуцированию ФМ состояния в монокристалле  $Lu_2Fe_{17}$ . В результате гидрирования температура Кюри возрастает и достигает значения  $T_C = 400~{\rm K}$  (см. рис. 2).

Этот эффект может быть объяснен как в рамках модели локализованных, так и в модели коллективизированных электронов.

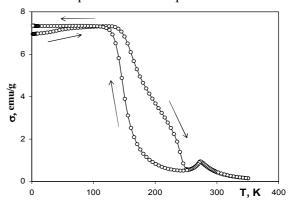



Рис.1. Температурная зависимость намагниченности монокристалла  $Lu_2Fe_{17}$  в магнитном поле H=100 Э.

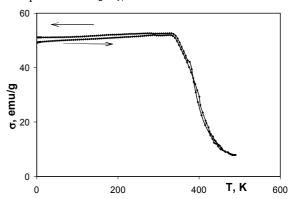



Рис.2. Температурная зависимость намагниченности монокристалла  $Lu_2Fe_{17}H_{1,5}$  в магнитном поле  $H=500~\Im$ .

Предполагая, что увеличение температуры Кюри монокристалла  $Lu_2Fe_{17}H_{1,5}$ , главным образом, связано с увеличением обменного интеграла в результате увеличения объема элементарной ячейки, мы рассчитали изменение  $T_C$ , используя следующую формулу:

$$\Delta T_C = -\frac{T_C}{\gamma} \frac{\Delta V}{V} \frac{d \ln T_C}{dp}$$

где  $\chi$ - сжимаемость. Для  $\text{Lu}_2\text{Fe}_{17}$  значения  $\chi = 1.03 \cdot 10^{-3} \, \text{кбар}^{-1}$  и  $\text{dlnT}_{\text{N}}/\text{dp} = -19 \cdot 10^{-3} \, \text{кбар}^{-1}$  [1]. Было обнаружено, что рассчитанное значение  $\Delta T_C = 55 \, \text{K}$  меньше, чем наблюдаемое -  $\Delta T_C = 125 \, \text{K}$ . Расчет возрастания температуры Кюри в рамках теории спиновых флуктуаций [5] дает завышенное значение -  $\Delta T_C = 175 \, \text{K}$ .

соединение Исходное  $Lu_2Fe_{17}$ метамагнитный переход АФМ индуцированное внешним магнитным полем ФМ состояние в случае, когда магнитное поле Температурная вдоль оси c. приложено зависимость критического поля  $H_{CR}(T)$ представлена на рис. 3.

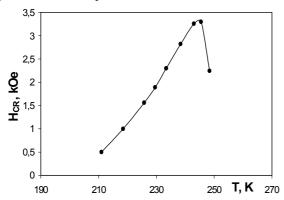



Рис. 3. Температурная зависимость критического поля в монокристалле  $Lu_2Fe_{17}$ .

Как видно из рис. 3, H<sub>CR</sub> возрастает с увеличением температуры, имеет узкий максимум И резко уменьшается при достижении температуры Нееля. Таким образом, магнитное поле Н ≥ 3,5 кЭ подавляет АФМ состояние в соединении Lu₂Fe₁7.

Для получения информации о магнитострикции (МС) монокристалла  $Lu_2Fe_{17}$  были изучены температурные и полевые зависимости продольной МС в области температур  $77-300~\mathrm{K}$  в магнитных полях до  $12~\mathrm{k}$ Э, приложенных вдоль и поперек гексагональной оси с [001] (см. рис. 4).

С увеличением температуры и приближением к температуре магнитного упорядочения (где парапроцесс играет наиболее важную роль) значения МС  $\lambda_{cc}$  и  $\lambda_{ac}$  значительно возрастают, достигая максимальных значений.

Гидрирование монокристалла  $Lu_2Fe_{17}$  приводит к уменьшению магнитострикционных деформаций до нулевого значения во всем исследуемом интервале температур 77-300 К.

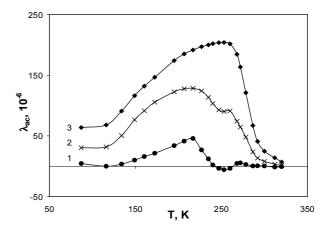



Рис. 4. Температурная зависимость поперечной магнитострикции  $\lambda_{ac}$  в  $Lu_2Fe_{17}$ , измеренная в магнитных полях: 1-2; 2-6,5; 3-12 к3-6.

#### Заключение

Таким образом, обнаружено, что гидрирование приводит к изменению магнитного состояния соединения  $Lu_2Fe_{17}$  — подавлению  $A\Phi M$  и индуцированию  $\Phi M$  состояний; и, кроме того, к изменению магнитоупругих взаимодействий в результате увеличения межатомных расстояний.

Эта работа поддержана Федеральной Программой поддержки ведущих научных школ НШ -205.2003.2 (Россия).

### References

- 1. Kamarad J., Arnold Z., Medvedeva I.V., Kuchin A.G. Metamagnetic behaviour and phase diagram of Lu<sub>2</sub>Fe<sub>17</sub> under high pressure J. Magn.Magn.Mater. 2002;242-245:876-878.
- 2. Tereshina I.S., Nikitin S.A., Stepien-Damm J., Gulay L.D., Pankratov N.Yu., Salamova A.A., Verbetsky V.N., Suski W. Structural and magnetic properties of  $Lu_2Fe_{17}H_x$  (x=0; 3) single crystals. J. Alloys and Compounds 2001; 329:31-36.
- 3. Isnard O., Miraglia S., Soubeyroux J.L., Fruchart D., and Stergiou A. Neutron diffraction study of the structural and magnetic properties of the  $R_2Fe_{17}H_X(D_X)$  ternary compounds (R = Ce, Nd and Ho). J. Less-Common Met. 1990; 162: 273-280.
- 4. Givord D., Givord F., Lemaire R. Magnetic properties of iron compounds with yttrium, lutetium and gadolinium. Colloque, suppl. 1971; 32(2-3):668-669.
- 5. Гребенников В.И., Гудин С.А. Спиновые флуктуации и температура Кюри в соединениях  $R_2M_{17}$  с немагнитными элементами. Физика твердого тела 1999;41(1):77-83