THE INFLUENCE OF HYDROGEN ON MAGNETIC AND MAGNETOELASTIC PROPERTIES OF Lu₂Fe₁₇ SINGLE CRYSTAL

<u>Tereshina E.A.⁽¹⁾</u>*, Tereshina I.S.⁽²⁾, Nikitin S.A.⁽¹⁾, Andreev A.V.⁽³⁾, Iwasieczko W.⁽⁴⁾, Drulis H.⁽⁴⁾

(1) Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia (2) Baikov Institute of Metallurgy and Material Science RAS, Moscow, 119991, Russia (3) Institute of Physics ASCR, 18221 Prague, Czech Republic

(4) Institute of Low Temperatures and Structure Research PAS, Wroclaw, 50-950, Poland * Fax: (095) 932-88-20, E-mail: janety@mail.ru

Introduction

The specific feature of the rare earth – iron intermetallic compounds with the R_2Fe_{17} stoichiometric formula is that their magnetic properties strongly depend on the unit cell volume and interatomic distances. It results in considerable shift of the magnetic ordering temperature T_C value under the hydrostatic pressure [1].

Among the R₂Fe₁₇ compounds the Lu₂Fe₁₇ compound is less studied because of difficulty to obtain big high-pure single crystals. It was established [2] that small uncontrolled dashes lead to suppression of the antiferromagnetic state and remove the T_C toward the higher temperatures. But the magnetic properties of Lu₂Fe₁₇ single crystal obtained from the high-pure components provide complete information about the iron sublattice behavior in R₂Fe₁₇ compounds. The purpose of the present work is to investigate the influence of hydrogenation on magnetic and magnetoelastic properties of Lu₂Fe₁₇ single crystal.

Results and discussion

The intermetallic Lu₂Fe₁₇ compound crystallizes in disordered variant of hexagonal structure of Th₂Ni₁₇ type with the P6₃/mmc space group [2]. It is known [3] that the R₂Fe₁₇ compounds could absorb up to 5 H at./f. u. and form stable hydrides. The hydrogen occupies octahedral positions for $x \le 3$ (x – the concentration of absorbed hydrogen atoms).

Fig. 1 shows the temperature dependence of magnetization $\sigma(T)$ for the Lu₂Fe₁₇ compound. There are some features on the $\sigma(T)$ curve: 1) a sharp slump of the magnetization at T = 180 K (the transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) state), which accompanied by the considerable hysteresis; and 2) a weak maximum typical for the AFM - PM (paramagnetic) transition with Néel temperature $T_N = 275 \text{ K}$, which is in good agreement with literature data [4]. The hydrogenation also leads to suppression of the AFM and induces FM state in the Lu₂Fe₁₇ single crystal. As a result of hydrogenation, the Curie temperature increases and reaches a value of $T_C = 400 \text{ K}$ (see Fig. 2).

This effect can be explained within both the localized and collectivized electrons models.

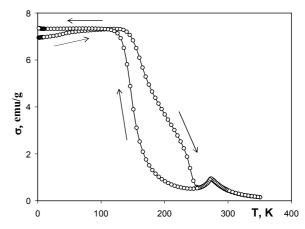


Fig. 1. Temperature dependence of magnetization of $\text{Lu}_2\text{Fe}_{17}$ single crystal in magnetic field of H = 100 Oe.

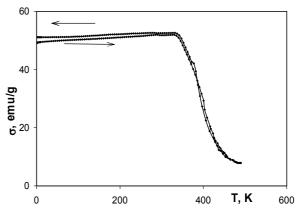


Fig. 2. Temperature dependence of magnetization of $Lu_2Fe_{17}H_{1,5}$ single crystal in magnetic field of H = 500 Oe.

Assuming that the increase in the Curie temperature value of the $Lu_2Fe_{17}H_{1,5}$ single crystal mainly connected with the increase of the exchange integrals as a result of increase in the unit cell volume, we could calculate a change in the T_C using the following formula:

$$\Delta T_C = -\frac{T_C}{\chi} \frac{\Delta V}{V} \frac{d \ln T_C}{dp}$$

where χ – compressibility. The values are $\chi = 1.03 \cdot 10^{-3} \, \mathrm{kbar}^{-1}$ and $\mathrm{dlnT_N/dp} = -19 \cdot 10^{-3} \, \mathrm{kbar}^{-1}$ for the $\mathrm{Lu_2Fe_{17}}$ [1]. It was found that the calculated value of $\Delta T_C = 55 \, \mathrm{K}$ is smaller than the observed one - $\Delta T_C = 125 \, \mathrm{K}$. The calculation of the Curie temperature increase in terms of the spin-fluctuations theory [5] provides a higher value - $\Delta T_C = 175 \, \mathrm{K}$.

The host Lu_2Fe_{17} compound has a metamagnetic transition from AFM to the induced by the internal magnetic field FM state in case when the magnetic field applied along the c axis. The temperature dependence of the critical field $H_{CR}(T)$ is shown in the Fig. 3.

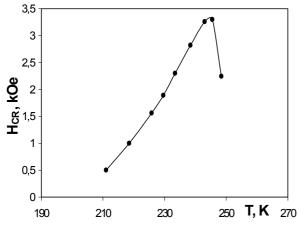


Fig. 3. Temperature dependence of the critical field for Lu_2Fe_{17} single crystal.

As one can see from the Fig. 3 the H_{CR} rises with temperature increase, has a narrow maximum and abruptly decreases when approaching the Néel temperature. Thus, the magnetic field of $H \geq 3.5$ kOe suppresses the AFM state in Lu_2Fe_{17} compound.

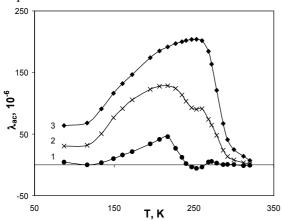


Fig. 4. Temperature dependence of transverse λ_{ac} magnetostriction for Lu₂Fe₁₇, measured in magnetic fields: 1-2; 2-6.5; 3-12 κOe .

To obtain the information about magnetostriction of the Lu₂Fe₁₇ single crystal the temperature and field dependencies of longitudinal magnetostriction in the temperature range of $77 - 300 \,\mathrm{K}$ and magnetic fields up to 12 $\kappa\mathrm{Oe}$ applied along and across the hexagonal c-axis [001] were investigated (see Fig. 4). With temperature increase and approaching to the magnetic ordering temperature (where the paraprocess plays the most important role) the values of magnetostriction λ_{cc} and λ_{ac} significantly rise approaching theirs maximum values.

Hydrogenation of the Lu₂Fe₁₇ single crystal leads to decrease of magnetostrictive deformations to zero value in the whole investigated temperature range of 77-300 K.

Conclusions

Thus, we established that hydrogenation leads to a change of magnetic state of Lu₂Fe₁₇ compound – suppression of the AFM and induction of the FM state; and moreover to a change of the magnetoelastic interactions as a result of the interatomic distances increase.

This work has been supported by the Federal Program on Support of Leading Scientific School Grant NSH -205.2003.2 (Russia).

References

- 1. Kamarad J., Arnold Z., Medvedeva I.V., Kuchin A.G. Metamagnetic behaviour and phase diagram of Lu₂Fe₁₇ under high pressure J. Magn.Magn.Mater. 2002;242-245:876-878.
- 2. Tereshina I.S., Nikitin S.A., Stepien-Damm J., Gulay L.D., Pankratov N.Yu., Salamova A.A., Verbetsky V.N., Suski W. Structural and magnetic properties of $Lu_2Fe_{17}H_x$ (x=0;3) single crystals. J. Alloys and Compounds 2001;329:31-36.
- 3. Isnard O., Miraglia S., Soubeyroux J.L., Fruchart D., and Stergiou A. Neutron diffraction study of the structural and magnetic properties of the $R_2Fe_{17}H_X(D_X)$ ternary compounds (R = Ce, Nd and Ho). J. Less-Common Met. 1990;162:273-280.
- 4. Givord D., Givord F., Lemaire R. Magnetic properties of iron compounds with yttrium, lutetium and gadolinium. Colloque, suppl. 1971;32(2-3):668-669.
- 5. Grebennikov V.I., Gudin S.A. Spin fluctuations and Curie temperature in R_2M_{17} cimpounds with non-magnetic elements. Fizika Tverdogo Tela 1999;41(1):77-83.