ВЛИЯНИЕ ЛЕГИРОВАНИЯ ПАЛЛАДИЯ ЭЛЕМЕНТАМИ ТРЕТЬЕЙ ГРУППЫ НА ЕГО ВЗАИМОДЕЙСТВИЕ С ВОДОРОДОМ И ВОДОРОДОПРОНИЦАЕМОСТЬ МЕМБРАН ДЛЯ ОЧИСТКИ ВОДОРОДА

Бурханов Г.С., Рошан Н.Р., <u>Кольчугина Н.Б.*</u>, Кореновский Н.Л., Словецкий Д.И.⁽¹⁾, Чистов Е.М.⁽¹⁾, Мамонов Н.А.⁽¹⁾

Институт металлургии и материаловедения, РАН, Ленинский пр-т 49, Москва, 119991 Россия (1)3AO «СИНПЛАЗ", Москва, Россия

Факс: +7-095-135-96-15; e-mail: natalik@ultra.imet.ac.ru

Введение

Палладий и сплавы на его основе обладают уникальным свойством избирательной проницаемости в отношении водорода, что позволяет создавать химические аппараты для реализации технологических процессов с использованием тонких металлических перегородок (мембран), которые делят химический реактор на две активные зоны, связанные между собой только по водороду.

Существующие в настоящее время промышленные аппараты по очистке водорода, ориентированные на его доочистку от паров воды, используют металлические мембраны на основе палладий—серебряных сплавов. Применение таких аппаратов в парогазовых средах, содержащих продукты органического происхождения (углерод, углеводороды, углекислый газ и т.д.), резко снижает их эффективность в результате деградации технологических свойств Pd-Ag сплавов.

Результаты и обсуждение

Результаты комплексных исследований по изучению свойств сплавов на основе палладия, легированного элементами третьей группы, проведенных авторами доклада, показали высокую эффективность изготовленных из них мембран для очистки и извлечения водорода из газовых смесей.

Сплавы на основе палладия с индием и

иттрием обладают высокой технологичностью при обработке давлением, что обеспечивает возможность изготовления тонких фольг методом холодной прокатки. Мембраны, изготовленные из этих фольг, обеспечивают работоспособность диффузионных элементов в интервале температур от 100 до 650°C и давлений между перепадах реакторными зонами до 10 атм. Использование иттрия в качестве легирующего элемента позволило подавить (альфа-бета) структурный переход в области температур от 50 до 150°C, характерный для Pd-Ag сплавов и повысить водородопроницаемость мембран (таблица).

Легирование палладий-иттриевых сплавов металлом VIII группы Периодической системы элементов позволило стабилизировать кристаллическую структуру мембранных сплавов в области температур эксплуатации диффузионных элементов, существенно уменьшить их толщину и, как следствие, понизить материалоемкость и стоимость рабочего элемента.

Выводы

Водород чистоты не хуже 99.999 масс.% необходим для получения гидридов и кремния в нанокристаллическом состоянии. Эта проблема может быть решена в настоящее время только на основе диффузионных очистительных элементов из сплавов палладия.

Таблица Удельная водородопроницаемость Q_{H2} (м³/м²чМПа $^{0.5}$) сплавов палладия в зависимости от температуры.

N	Состав сплавов	Температура, °С					
		350	400	450	500	550	600
1	Pd-6% Y	4.8	4.9	5.0	5.2	5.5	5.8
2	Pd-8% Y	3.3	3.8	4,0	4.1	4.2	4.3
3	Pd-10% Y	2.5	3.0	3.3	3.7	3.8	4.0
4	Pd-6%Y-Me	3.1	3.2	3.4	3.7	3.8	3.9
5	Pd-8%Y- Me	3.6	4.0	4.3	3.7	4.5	4.7
6	Pd-6%In-0.5%Ru	1.0	1.2	1.5	4.4	1.9	2.2
7	Pd-23% Ag	1.6	1.9	2.3	1.7	3.0	3.4