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Introduction

Termodesorption spectrometry (TDS) method
is widely used when studying metal-hydrogen sys-
tems. The sample is heated in a vacuum chamber,
the desorption flux of hydrogen is registered and
the kinetic parameters of the considered model are
estimated. The flux dependence on temperature
(the TDS-spectrum) may have few peaks which
correspond to different sets of limiting factors. For
references of the experimental see [1] and refer-
ences therein. For high-temperature desorption
peak and small powder particles diffusion can be
considered quick. Distributed diffusion models are
presented in [2,3]. We take into consideration the
reversible capture of hydrogen atoms by material
defects and reduction. The density increases while
hydride decomposes (the volume decreases). This
results in tensions: the powder becomes finer after
hydrogenation/dehydrogenation cycles. We con-
sider the stable size of the particles.

Mathematical models
The material is powder; thus let us consider a

particle as a sphere of radius L(¢) with a hydride
core of varying radius p(¢) inside ( S phase). A
spherical layer of width L — p is metal with dis-

solved hydrogen (a phase). Two suppositions are
commonly used for the desorption process:
1) hydrogen atoms come from the bulk to the sur-
face and desorb forming molecules; 2) for “por-
ous” materials hydrogen desorbs directly from the
near-to-surface bulk. The heating is assumed to be

monotonous (usually 7'(¢) = T, + vt ), diffusion in
the B phase — relatively slow. Critical concentra-
tion ¢, = QO has no time to change during the ex-

periment. Dehydrogenation proceeds as hydride
core shrinks and metal with dissolved hydrogen is
degassed. All coefficients are considered Arrhenius
with respect to temperature.

1. The Simplest Model. Atom flux with density
I(¢) at the moving phase boundary initially has
time to keep the equilibrium concentration in the
c(t)y=c,(t)=c. c=n0,
0<n<1. In general case Q = Q(T), c :E(T),

a phase Here
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but for the erbium hydride we can suppose that O,

¢ are constant within the thin peak of TDS-
spectra. The desorption flux density is square:

J(t)=b(t) c*,b(t) = b(T(1)).

After hydride vanishes (i.e. p(#.)=0) we have
p =0 and c(f) monotonically decreases. Let
us consider these two stages. For traps concentra-
tion z(#) we assume the equation z=a,c—a,z.
Here the coefficients of reversible capture are con-
stant within the considered TDS-peak. For ¢ =17,
wehave 2=0,z=2, a,z=a,c, ¢ +z<Q and
the balance is

OV (Ly) = QV(p)+(c+ )V (L) =V(p)]+
+[[S(L){be’ - uspldr, L, = L(0).

Here V' (r) is for the volume of a sphere of radius
r, S(r) is for the area of its surface, usp is for
the density of the return flux of /A due to the pres-
sure p(t) of H, inthe chamber.

Let us denote the compression coefficient by
y.If in B phase sample’s volume equals ¥V then
in a phase this volume is ¥V, ¥ <1. Size reduc-
tion of the particle is proportional to that of the
hydride core. Thus (1-y)[L,> - p°1=L," - L,
L(t) = L(p(1)).

After differentiating the balance equation on ¢ we
obtain the equation for L(#) with the solution

1- Y t —2
L(t) = — | {usp—bc }dr + L, .
0=rcra)] '
Using  L(f) we determine p(f) and

t,: p(t.) =0. As volume V(p) decreases pro-
portionally to p*, we can switch to degassing stage
when p <<1 (p < L,/10). The balance equation
forit(¢2>t.,p=0)is

{[e(t+ At) —c(t)]+[z(t + At) —z() ]}V (L) =
{s() p(1) = b(1)c* (1) }S (L)AL + o(Ar),
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where L, = L(t.) . Dividing this on Az and con-
sidering a limit as Az tends to zero we obtain:
¢=3L"{usp —bc*} - ac+a,z, c(t.)=c,

z=a,c—a,z, z(t.)=2z, a,c =a,z, t>t.

Model peaks have spikes at moments when hy-
dride ends. Size distribution results in significant
smoothing and good approximation of experimen-
tal data.

More detailed description of the dehydroge-
nation process makes the models much more com-
plex. Therefore we show only qualitative characte-
ristics of the models below.

2. A Switching Model. We suppose that for
the certain time desorption is low enough, so the
equilibrium concentration is maintained in «
phase. Hydride decomposes with the rate necessary
to compensate the desorption outflow:

I =k(T)O > b(T)c*. When the desorption flux
becomes high enough to overcome the maximum
possible hydride decomposition flux, c(¢) will
decrease. The switch condition follows from the
fact that the fluxes must be equal (¢ =c¢, 1 <t,):

kQp* = {bc* — usp} L, t

To this moment the expression for L(#) remains

=1.

the same. Equations for # > ¢ are
—[Q—c(t) - 2()]p(1) = I(1), p(t,) = p;,

(L= p) ¢ =3[Ip* +{u sp~bc} [’ ~
—(c+2)’L1-2(L - p°), ¢(t,) =c.

3. Self-Control of Hydride Decomposition. We
suppose here that the balance of desorption flux
and flux from hydride from the very beginning
determine the dynamics of the dissolved hydrogen.
At the same time 1(¢) =k(T)Q (1—c/c). Poten-
tial hydride decomposition rate is proportional to
QO but the greater the concentration the slower the
hydride decomposition.

4. Models with Surface. We assume that the
surface and the bulk concentrations are connected
by a condition of quick  solution,

J(t) = b(T)q’(t). Equations for the phase bound

movement and the reversible capture are the same.
Dynamics of the concentrations are obtained from
the mass conservation law.
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3. A Model with Relatively Fast Diffusion. We
suppose that diffusion is rather quick, but not quick
enough to make c(¢,r) constant with respect to 7 :

c=c(t,r), re[p, L]. From the diffusion equa-
tion in spherical coordinates

c,(t,r)=D(T) [c, (t,r)+2c, (t,r)/7]

at high diffusion coefficient Dand ¢,/ D <<1 by
integrating [...]=0 one obtains an expression
c(t,r)=A(t)+ B(t)/r. 1t is a slowly changing
stationary distribution and is rode by low speed of
phase bound compared to diffusion of hydrogen in
the solution and desorption. Function parameters
A(t), B(t) are defined from the mass conservation
law. When the hydride core vanishes the hyperbola
is reduced to the straight line c(z,7) = c(¢). After

that, the degassing of metal with dissolved hydro-
gen takes place.

4. The Distributed Models. These models
have the form of nonlinear diffusion boundary-
value problems with moving bounds. Size reduc-
tion effect is taken into account. Desorption is ei-
ther bulk or surface. Distribution of particle size is
normal. The phase bound movement is described
by the Stefan condition. Such problems require
development of numerical methods: method of
catching front in mesh point and method of domain
transformation to stationary state. The function
p(t) becomes the functional parameter.

In the paper we present the results of numeri-
cal analysis of these models of TDS-method. In
particular, the influence of the parameters is inves-
tigated. Model curves are compared with the expe-
rimental data.
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