ВЗАИМОСВЯЗЬ НАВОДОРОЖИВАНИЯ И СТРУКТУРЫ НИКЕЛЕВЫХ ПЛЁНОК

Звягинцева А.В., Кравцова Ю.Г.*

Воронежский государственный технический университет ул. Московский пр.,14, Воронеж, 394026, Россия *E-mail: ushka2004@list.ru

Введение

Гальванические никелевые плёнки толщиной 3—8 мкм нашли применение в технологиях радиоэлектронной промышленности и приборостроении. Особенностями электрохимического метода получения покрытий на основе никеля являются высокая структурная чувствительность и зависимость свойств от химического состава электролита и режимов электролиза [1, 2, 3]. В связи с этим целью настоящей работы стало изучение влияния режимов электроосаждения на структуру и наводороживание никелевых плёнок толщиной до 4 мкм, полученных из сульфаматного электролита [4].

Для определения структуры осадков Ni использовались образцы толщиной 500 – 1000 Å на медной подложке. По фотографиям (увеличение 82000) микроструктур никелевых осадков рассчитывался размер зерна и были построены гистограммы, характеризующие распределение зёрен по размеру. Величина микронапряжений и размер блоков мозаики определяли по линиям (111) а и (200) а. Количественная величина пористости представлена в виде поверхностей пористости (n) - числа пор, приходящихся на 1 см² гальванического покрытия [5]. Наводороживание (V_{H2} , см³/ 100 г) определяли методом вакуумной экстракции [6]. Диапазон режимов электролиза: температура t = 30 - 50 °C; кислотность среды pH = 3,5 – 4,5.

Результаты и обсуждение

Результаты исследования представлены на рис. 1, 2, 3. На рис. 1 изображена гистограмма распределения зёрен по размеру от их количества для никелевой плёнки, полученной при $t = 40\,^{0}$ С. Можно сделать вывод о том, что в данном режиме преобладающее количество зёрен (68 %) находятся в пределах размеров от 0 до 400 Å, и полученную структуру можно отнести к мелкозернистой, а форму зёрен к равноосной.

Влияние температуры электролита на структуру никелевых плёнок можно проследить из сравнения рис. 1 и рис. 2, 3. Понижение температуры электролита до 30 °C приводит к изменению вида гистограммы. При низкой температуре максимумы сдвигаются вправо, и наблюдается значительная дисперсия зерна по размеру.

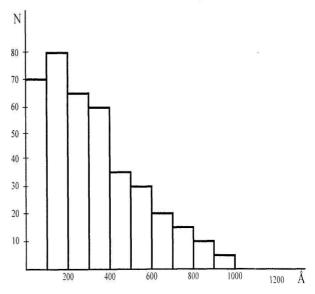


Рис. 1. Гистограмма распределения зерен по размеру для никелевой пленки.

Режимы электролиза: $i_k = 2A/дм^2$; pH = 4,0; t = 40 °C

Число мелких зёрен диаметром 100-400~Å составляет $\sim 66~\%$, средних – от $400~\text{до}~800~\text{Å}\sim 40~\%$ и крупных с диаметром более $800~\text{Å}\sim 13~\%$ от общего числа зёрен. Это свидетельствует о формировании неравнозернистой структуры. При повышении температуры электролита до $50~^{\circ}\text{C}$ происходит выравнивание размера зерна (рис. 3). Уменьшается доля мелких зёрен с размером до $400~\text{Å}~(\sim 60~\%)$ и увеличивается число зёрен с размером $800-1000~\text{Å}~(\sim 15~\%)$. Начиная с температуры электролита $40~^{\circ}\text{C}$, исчезают крупные кристаллиты с размером более 1000~Å~(рис.~1,3).

Интересно влияние температуры электролита на микроискажения и дисперсность блоков мозаики никелевых плёнок. При снижении t от 40 до 30 0 С уменьшаются величина микроискажений и размер блоков мозаики D_{HKL} . Это, по-видимому, связано с тем, что при низких температурах выделение водорода происходит интенсивнее, а поскольку одновременно протекает осаждение никеля, то образуется множество пор, несплошностей, макродефектов. Именно возникновение пор и дефектов приводит к частичной релаксации микроискажений в покрытии. Повышение температуры электролита

от 30 до 40 0 С вызывает формирование плёнки с меньшей пористостью, от 17,2 до 10,4. Дело в том, что при высоких концентрациях сульфамата никеля (Ni(NH₂SO₃)₂ • 4 H₂O), \sim 500 г/л, понижение температуры электролита увеличивает его вязкость, которая затрудняет отвод молекулярного водорода с поверхности осадка, и пористость покрытия возрастает. Получено, что наибольшее содержание водорода (V_{H2}) при $t=30^{0}$ С составляет 117 см 3 / 100 г.

Изменение содержания водорода в никелевом покрытии в зависимости от температуры представлено в таблице.

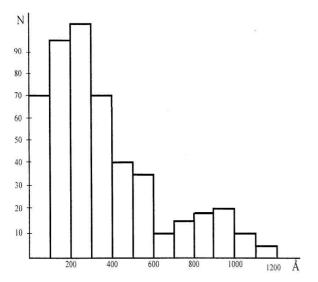


Рис. 2. Гистограмма распределения зерен по размеру для никелевой пленки. Режимы электролиза:

t = 30 °C; $i_K = 2 \text{ A/дм}^2$; pH = 4,0

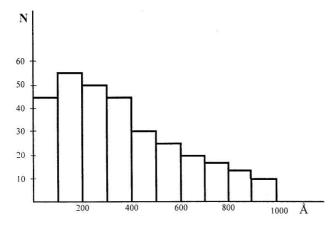


Рис. 3. Гистограмма распределения зерен по размеру для никелевой пленки. Режимы электролиза:

$$t = 50$$
 °C; $i_K = 2 \text{ A/дм}^2$; pH = 4,0

Таблипа

Влияние температуры электролита на пористость и наводороживание никелевых плёнок (толщина покрытия d = 4 мкм).

Режимы электролиза: pH = 4.0; $i_k = 2 \text{ A/дм}^2$

t, °C	Пористость n, пор/см ²	Наводороживание V_{H2} , $cm^3/100 \ \Gamma$
30	17,2	117
40	10,4	104
50	11,1	88,4

Выводы

Покрытия, полученные в режиме электроосаждения: $i_k = 2 \text{ A/дм}^2$, pH = 4,0, $t = 40 \, ^{0}\text{C}$, характеризуются меньшей дефектностью и пористостью, большим размером блоков мозаики, что приводит к росту микроискажений и формированию более напряжённого покрытия. Напряжённость и D_{HKL} покрытий, осаждённых при данном режиме, наибольшие.

Увеличение t от 40 до 50 $^{\circ}$ С вызывает сокращение числа пор и уменьшение содержания водорода в никелевом осадке. При t = 50 $^{\circ}$ С V_{H2} = 88,4 см³/ 100 г. С повышением t до 50 $^{\circ}$ С микроискажения кристаллической решётки снижаются. Вместе с тем снижение количества выделяющегося на катоде водорода приводит к уменьшению блокировки активных центров кристаллизации, в результате чего их число возрастает, а структура осадка становится более равнозернистой. Покрытие формируется менее напряжённым.

Повышение температуры электролита уменьшает его вязкость. Тем самым облегчается десорбция водорода с поверхности катода, и снижается пористость покрытия.

Литература

- 1. Садаков Г.А. Гальванопластика. М.: Машиностроение, 1987. 288 с.
- 2. Поветкин В.В. Структура электролитических покрытий / В.В. Поветкин, И.М. Ковенский. М.: Металлургия, 1989. 136 с.
- 3. Hammond R.A.F. // Metal finishing Journal. 1970. Vol. 16, № 188. P. 234 243.
- 4. Звягинцева А.В. Сравнительная характеристика наводораживания никелевых и никельбор плёнок, полученных электролитическим способом/ А.В. Звягинцева, Ю.Г. Кравцова// Водородная обработка материалов: Тез. докл. четв. Междунар. конф. ВОМ-2004. Донецк, 2004. С. 415 420.
- 5. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронооптический анализ. М.: МИСИС, 1994. 327 с.