МАГНИТНЫЕ СВОЙСТВА ГИДРИДОВ Er₂Fe₁₄BH_x

Бездушный Р., Терешина И.С.* (1), Дамянова Р., <u>Никитин С.А.</u> (2), Терешина Е.А. (2), Бурханов Г.С. (1), Чистяков О.Д. (1)

Кафедра физики твердого тела, факультет физики, Софийский университет, София 1126, Болгария

(1) Институт металлургии и материаловедения им. А.А. Байкова РАН, Ленинский просп. 49, Москва, 119991, Россия

Введение

Соединения R_2 Fe₁₄B (R – редкая земля) поглощают значительное количество водорода и образуют стабильные гидриды при комнатной температуре. Изменение магнитных характеристик этих соединений вследствие поглощения водорода представляет значительный фундаментальный и технологический интерес.

Ранее [1] были исследованы магнитные интерметаллического $Er_2Fe_{14}B$. Согласно литературным данным температура магнитного упорядочения Т_С этого состава равна 554 К, а температура спинпереориентационного перехода (СПП) Т_{SR} равна приблизительно 325 - 327 К. Цель этой работы состоит в исследовании влияния гидрирования на магнитные фазовые переходы Er₂Fe₁₄. Существенной соединении особенностью этого исследования является то, что измерения температурных зависимостей были намагниченности выполнены постоянном давлении водорода в контейнере с образцом.

Результаты и обсуждение

Образцы $Er_2Fe_{14}B$ были приготовлены дуговой плавкой в атмосфере очищенного аргона из исходных материалов с чистотой не менее 99.99 %. После плавки выплавленные образцы были завернуты в танталовую фольгу, запаяны в кварцевые трубки и подвергнуты отжигу в течение 14 дней при 900^{0} С. С помощью рентгеновской дифракции было установлено наличие однофазной структуры в образцах.

Для изучения процессов абсорбции и десорбции водорода использовалась волюметрическая установка с давлением водорода до 4 атм. в температурном диапазоне от 300 до 700 K.

Измерение намагниченности было выполнено в температурном диапазоне 300-700 К в постоянных магнитных полях до 12 kOe с помощью вибрационного магнетометра,

который обеспечивал магнитные измерения при давлении газа до 12 атм.

Для соединений $Er_2Fe_{14}BH_x$ (х — концентрация H) проведено исследование влияния водорода на температуру Кюри. Зависимость температуры Кюри для указанных соединений показана на рис. 1.

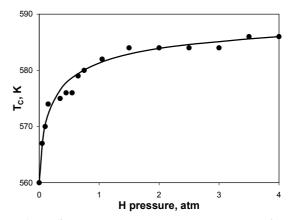


Рис 1. Зависимость температуры Кюри соединений $Er_2Fe_{14}BH_x$ от давления водорода.

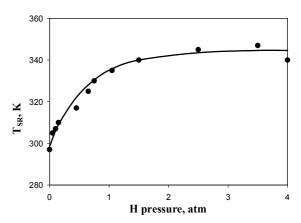


Рис. 2. Зависимость температуры СПП соединений $Er_2Fe_{14}BH_x$ от давления водорода.

Как видно из рис. 1, температура Кюри сильно зависит от содержания водорода: при малых концентрациях водорода имеет место резкий рост T_c , который связан с увеличением параметров решетки и возможно, обусловлен уменьшением отрицательных обменных взаимодействий между атомами F_c .

СПП в соединении $Er_2Fe_{14}B$ можно объянить конкуренцией одноосной магнитной анизотропии подрешетки Fe и плоскостной анизоторпией от R подрешетки, причем первая преобладает при высоких температурах, а последняя – при низких.

представлена рис. 2 зависимость температуры T_{SR} от содержания водорода, из которой видно, что существует корреляция между кривыми $T_{C}(p)$ и $T_{SR}(p)$. Следует отметить, что согласно нашим результатам в соединении $Er_2Fe_{14}B$ $T_{SR} = 297$ K, что заметно меньше (на 30 K) значения T_{SR} литературным данным [1]. Этот факт может быть объяснен следующим образом: поскольку данные соединения поглощают водород при комнатной температуре И атмосферном исходные соединения Er₂Fe₁₄B давлении, возможно содержат некоторое количество Н.

Исходя из значений T_{SR} в $Er_2Fe_{14}BH_x$ и K_{1Fe} [2] мы вычислили параметр кристаллического поля (КП) B_{20} до и после гидрирования, используя формулу, полученную Кузьминым и др. [3].

$$B_{20} = \frac{20K_{1Fe}}{J(J+1)(2J-1)(2J+3)} \left(\frac{k_B T_{SR}}{\Delta_{ex}}\right)^2$$

где $\Delta_{\rm ex}$ = 2 $|g_{\rm J}$ - 1| $m_{\rm B}$ $B_{\rm ex}$ -обменное расщепление между двумя последовательными энергетическими уровнями, J=15/2 — квантовое число полного момента иона ${\rm Er}^{3+}$. Значения обменного поля $B_{\rm ex}$ и обменное расщепление $\Delta_{\rm ex}$ были определены, используя значения $T_{\rm C}$ для ${\rm Lu}_2 Fe_{14} B H_x$ и ${\rm Er}_2 Fe_{14} B H_x$ в рамках теории молекулярного поля.

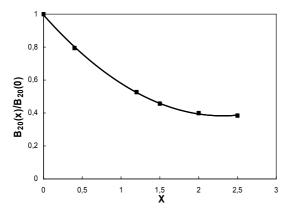


Рис. 3. Зависимость параметров КП $Er_2Fe_{14}BH_x$ от количества поглощенного водорода x.

Параметр ΚП B_{20} уменьшается концентрации возрастании водорода, следовательно, константа магнитной анизотропии K_{1R} редкоземельной подрешетки $(K_{1R} \sim -J^2B_{20}B_J^2(x),$ где $B_J^2(x)$ обобщенная функция Бриллюэна второго порядка) также уменьшается. Гидрирование приводит уменьшению одноосного вклада в анизотропию K_{1Fe} от Fe-подрешетки [2]. Компенсация констант редкоземельной и Fe-подрешеток для исходного состава происходит при $T_{SR} = 297 \text{ K}$, более гидридов при высоких температурах. Возрастание температуры спинпереориентационного перехода обусловлено усилением обменных взаимодействий ионов Fe-Fe и редкая земля-Fe.

Заключение

Синтезированы и исследованы интерметаллическое соединение $Er_2Fe_{14}B$ и его гидриды. Изучены зависимости температуры Кюри и температуры СПП от давления водорода. Обнаружено, что T_C и T_{SR} возрастают монотонно с увеличением давления водорода. Полученные экспериментальные результаты позволяют выяснить физические механизмы, определяющие изменение магнитокристаллических и обменных взаимодействий при поглощении водорода.

Работа поддержана Федеральной программой поддержки ведущих научных школ, НШ -205.2003.2 и РФФИ грант № 04-03-32194.

Литература

- 1. Herbst J.F. R₂Fe₁₄B materials: Intrinsic properties and technological aspects. Review of Modern Physics 1991; 63:819-898.
- 2. Tereshina I.S., Andreev A.V., Drulis H., Tereshina E.A. Effect of hydrogen on magnetic properties of Lu₂Fe₁₄B single crystal. J. Alloys and Comp. (in press).
- 3. Kuz'min M.D., Garcia L.M., Plaza I., Bartolome J., Fruchart D., Buschow K.H.J. Spin reorientation transitions in $R_2Fe_{14}ZH_x$ (Z=B,C) compounds.
- J. Magn.Magn.Mater. 1995;146:77-83.