СТРУКТУРА И ВОДОРОДСОРБЦИОННЫЕ СВОЙСТВА НОВЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ

<u>Денис Р.В.*, Салдан И.В., Делаплейн Р.¹, Березовец В.В., Завалий И.Ю.</u>

Физико-механический институт НАН Украины, ул. Научная 5, Львов, 79601 Украина (1) Studsvik Neutron Research Laboratory, Uppsala University, S-611 82 Nyköping, Sweden * Факс: 380(322)649427; e-mail: rdenys@ipm.lviv.ua

Введение

Магний и его сплавы являются одними из наиболее перспективных материалов для хранения водорода и для элетродов для Ni-МГ аккумуляторов благодаря высокой водородсорбционной емкости (Mg - 7.6 мас.%, Mg2Ni - 3.6 мас.%), низкой стоимости, доступности и нетоксичности [1]. Существенными недостатками магниевых сплавов являются высокие температуры (250-300°С) и низкая скорость сорбции-десорбции водорода, а также низкая коррозионная стойкость. Среди ряда методов улучшения водородсорбционных параметров сплавов магния следует выделить высокоэнергетический механохимический помол, который позволяет получить материал в аморфном нанокристалличеком состоянии, а также синтезировать новые соединения. В данной работе приведены результаты исследования сплавов на основе Мд2Ni, которые синтезированы названным методом и модифицированы титаном, марганцем и кислородом.

Результаты и обсуждение

Для приготовления сплавов использовали порошки металлов Mg, Ni, Ti, Mn (не менее 99,9% осн. компонента), TiO и промышленный сплав Mg₂Ni. Синтез сплавов проводили с использованием высокоэнергетического механического помола (SPEX-8000D) с последующим спеканием в атмосфере аргона. Помол производили в заполненных чистым Аг герметических камерах, соотношение массы мелющих тел к массе порошка было 10:1, время помола 10 часов. После помола порошок спресовывали в таблетки под давлением 5т/см² и спекали в потоке аргона при температуре 500 °C. Фазово-структурный анализ проводили методом порошковой рентгеновской дифракции на дифрактометре ДРОН-3.0.

Рентгено-фазовый анализ полученных сплавов показал, что частичное замещение магния на титан или марганец в сплаве Mg_2Ni сопровождается образованием новых тройных интерметаллических соединений с гранецентрированной кубической структурой. При составе сплавов $Mg_{1.5}M_{0.5}Ni$ (M=Ti, Mn) удалось получить практически однофазные образцы. Структурный анализ показал, что эти новые соединения характеризуются структурой типа Nb_3Ni_2Si [2], которая является упорядоченной производной от структуры типа Ti_2Ni . Результаты

нейтронографического анализа соединения Mg_3MnNi_2 приведены на рис. 1 и в таблице.

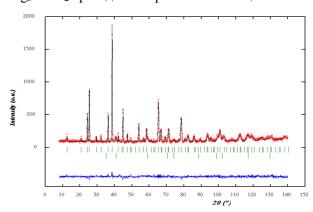


Рис. 1. Экспериментальный (\circ), расчетный (-) и разностный (нижняя линия) профили нейтронограммы соединения Mg₃MnNi₂ (диффрактометр NPD, λ =1.470Å). Вертикальные линии отвечают положению брэгтовских отражений основной фазы Mg₃MnNi₂ (вверху) и примесной фазы MgO (внизу).

Таблица. Кристаллографические параметры соединения Mg_3MnNi_2

 $\Pi p. zp. Fd3m, a=11.5612(3) \text{ Å}, V=1545.29(7) \text{ Å}^3$

Атом	Позиция	x/a	y/b	z/c	$B_{iso}(A^2)$
Mg	48 <i>f</i>	0.4276(3)	1/4	1/4	0.59(9)
Mn	16 <i>c</i>	0	0	0	1.3(3)
Ni	32 <i>e</i>	0.2057(2)	х	X	0.61(6)

$$R_B = 7.59\%$$
, $R_D = 7.21\%$, $R_{WD} = 9.19\%$; $\chi^2 = 1.11$

Существует большое количество интерметаллидов со структурой типа Ti₂Ni, которая стабилизируется легкими атомами внедрения О (C, N). Поэтому, в данной работе нами было синтезировано однофазные сплавы состава Мg₂Ti₂Ni₂O_{0.25} и $Mg_2Ti_2Ni_15Mn_05O_{0.25}$ для проверки гипотезы про возможность стабилизации соединений в системах на основе магния. Установлено, что синтезированные сплавы характеризуются объемноцентрированной кубической структурой со статистическим распределением атомов металла в узлах кристаллической решетки. Отсутствие в составе сплавов примесей оксидов металлов позволяет сделать предположение про растворение кислорода в ОЦК структуре с наиболее вероятным заполнением октаэдрических пустот. Однако, это предположение требует дополнительной проверки методом нейтронной диффракции.

В отличие от традиционного сплава Mg2Ni, котрый поглощает водород только при температурах свыше 300°С и высоких давлениях, исследованные в данной работе новые сплавы способны поглощать водород уже при комнатной температуре и давлениях 1-2 МПа. Так, соединение Mg₃MnNi₂ поглощает водород при комнатной температуре и давлении 1 МПа, образуя гидрид с весовым содержанием водорода около 1 %. Исследование десорбции водорода из гидрида методом ТДС показало, что интенсивное выделение водорода начинается с температур около 120°C с пиком при 200°C, тогда как выделение водорода из гидрида Mg₂NiH₄ происходит при температурах выше 250°С. Следует отметить, что новые магниевые соединения также характеризуются улучшенной кинетикой абсорбции-десорбции водорода.

Электрохимическое тестирование МГ электродов на основе новых сплавов Mg проводили на компьютеризованном приборе PGStat8 за методикой описанной в [3]. Зарядно-разрядное тестирование МГ электродов проводили в гальваностатическом режиме при 50 мА/г. Разряд останавливали при потенциале рабочего электрода —0,6В (Ag/AgCl). На рис.2. представлены кривые зависимости емкости электродов на основе Mg₃MnNi₂, Mg₃TiNi₂ (г.ц.к. структура) и Mg₂Ti₂Ni₂O_{0.25} (о.ц.к структура) от количества циклов.

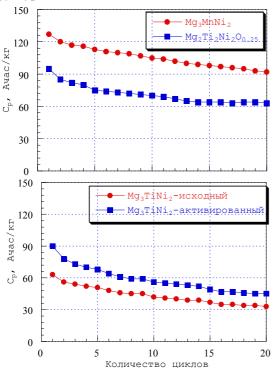


Рис.2. Зависимость разрядной емкости от количества циклов для сплавов Mg_3MnNi_2 , $Mg_2Ti_2Ni_2O_{0.25}$ и Mg_3TiNi_2 .

Среди исследованнных материалов наивысшей разрядной емкостью обладают электроды на основе Mg_3MnNi_2 (216 мАгод/г), этот материал демонстрирует также идеальную кривую электрохимического разряда и достаточно хорошую для магниевых сплавов циклическую стабильность. Его разрядная емкость после 20 циклов состаляет 74% от исходной, тогда как разрядная емкость сплава Mg₂Ni покрытого Ni после 10 циклов уменьшается на 80% [4]. Для улучшения характеристик электродов проведено фторирование их поверхности с помощью водного раствора NH₄F [5]. В нашем исследовании фторирование раствором NH₄F привело к увеличению исходной разрядной емкости почти на 50% в сравнении с необработанным материалом. При этом циклическая стабильность электродов практически не изменилась.

Выводы

Методом высокоэнергетического механического помола синтезированы новые соединения магния с гранецентрированной кубической структурой типа Ti_2Ni и объемноцентрированной кубической структурой. В сравнении с традиционным сплавом Mg_2Ni , новые материалы способны поглощать водород при комнатной температуре, характеризуются улучшенной кинетикой сорбции-десорбции водорода и электродными характеристиками.

Литература

- 1. Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J.Alloys Comp. 1999;293-295:877-888.
- 2. Gladyshevskiy E.I., Kuz'ma Yu.B., Krypyakevych P.I. Crystal structures of the compounds Mn₃Ni₂Si, V₃Ni₂Si Nb₃Ni₂Si, and related chromium and tantalum compounds. Zhurnal Strukturnoyi Khimii 1963;4(3):372-379.
- 3. Zavaliy I.Yu., Woicik G., Mlynarek G., Saldan I.V. *et al.* Phase-Structural Characteristics of $(Ti_{1-x}Zr_X)_4Ni_2O_{0.3}$ Alloys and Their Hydrogen Gas and Electrochemical Absorption-Desorption Properties. J. Alloys Comp., 2000;314:124-131.
- 4. Chen J., Bradhurst, Dou S.X., Liu H.K. Mg₂Ni alloy for metal hydride electrodes. J. Manerials Sci. 1998;33:4671-4675
- 5. Yang H. et al. Characteristics of $Mg_2Ni_{0.75}Cr_{0.25}$ alloy after surface treatment. J.Alloys Comp. 2000;305:282-289.