СТРУКТУРНЫЕ ИССЛЕДОВАНИЯ ПСЕВДОБИНАРНЫХ СОЕДИНЕНИЙ $R(Cu_{1-x}Ga_x)_2$ (R=La, Ce, Y, Tb, Ho, Dy, Pr, Nd) И ИХ ГИДРИДОВ

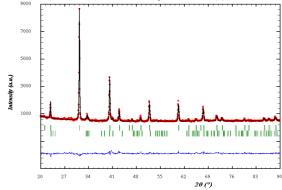
Мякуш О.В. 1 , Ковальчук И.В. 2 , Вербовицкий Ю.В. 1 , Денис Р.В. 2 , Завалий И.Ю. 2 , Котур Б.Я. 1

(1) Львовский национальный университет им. И.Франко, 79005 Львов, ул.Кирилла и Мефодия, 6

(2) Физико-механический институт НАН Украины, 79601 Львов, ул. Научная, 5.

Введение

При гидрировании сплавов R(Cu,Ni)₂ наблюдалось превращение структуры с СеСи2 и AlB_2 в Fe_2P тип [1]. Тернарные галлиды CeMGa (М- Мп,Со,Си) в зависимости от переходного металла имеют различную кристаллическую структуру и водородсорбционные свойства. Соединения CeMnGa, CeCoGa и CeCuGa кристаллизируются в структурном типе MgCu₂, CeCoAl и CeCu₂, соответственно. Эти фазы поглощают водород при комнатной температуре и их водородсорбционная емкость зависит от типа кристаллической структуры. При этом структура гидридов CeCoGaH_{3.0} и CeCuGaH_{0.8} превращается в гексагональную типа AlB₂, а СеМпGаH_{1.6} обладает кубической структурой исходной матрицы типа MgCu₂ [2]. В этой работе мы представляем результаты исследования кристаллической структуры гидридов $R(Cu_{1-x}Ga_x)_2$ для ряда P3M.


Результаты и их обсуждение

Ряд галлидов R(Cu_{1-x}Ga_x)₂ (R= La, Ce, Y, Tb, Ho, Dy, Pr, Nd) синтезировали методом электродуговой плавки и отжигали при 600°C на протяжении 700 ч. Рентгеноструктурным методом определили их фазовый состав и кристаллическую структуру основной фазы, которой является соединение со структурой типа CeCu₂. Эти фазы поглощали водород при комнатной температуре и давлении водорода 0.1-0.12 MPa после активации образцов в вакууме при 500 °C на протяжении 15 мин.

Соединение $LaCu_2$ имеет гексагональную структуру AlB_2 , другие соединения RCu_2 так же как и псевдобинарные соединения $R(Cu_{1-x}Ga_x)_2$ кристаллизируются в орторомбической структуре KHg_2 ($CeCu_2$). Наши исследования показали, что бинарные соединения $LaCu_2$ и $TbCu_2$ аморфизируются при взаимодействии с водородом. При гидрировании замещенных галием образцов их кристаллическая структура не разрушается под влиянием водорода.

При гидрировании фаз $LaCu_{1.55}Ga_{0.45}$ и $LaCu_{1.4}Ga_{0.6}$ образуются гидриды состава $LaCu_{1.55}Ga_{0.45}H_{2.55}$ и $LaCu_{1.4}Ga_{0.6}H_{2.45}$ со структурой типа AlB_2 . Для этих гидридов проведено уточнение кристаллической структуры мето-

дом Ритвельда с помощью программы FullProf. На рисунке представлены экспериментальный, рассчитанный и разностный профили для $LaCu_{1.55}Ga_{0.45}H_{2.55}$, указаны также положения пиков основной гидридной фазы и следовых количеств исходного интерметаллида.

Образование гидридов LaCu $_{1.55}$ Ga $_{0.45}$ H $_{2.55}$ и LaCu $_{1.4}$ Ga $_{0.6}$ H $_{2.45}$ сопровождается увеличением объемов елементарных ячеек ($\Delta V/V$) соответственно на 17.2 и 14.6 %. Кристаллографические параметры гидридов представлены в таблице.

Состав	a, Å	c, Å	V, Å ³
LaCu _{1.55} Ga _{0.45} H _{2.55}	4.4884(5)	4.2071(4)	73.40(1)
LaCu _{1.4} Ga _{0.6} H _{2.45}	4.4549(2)	4.1751(3)	71.76(7)

Выводы

Процесс поглощения водорода фазами $R(Cu_{1-x}Ga_x)_2$ (R=Y, P3M) при нормальных условиях происходит без аморфизации. Для фаз $La(Cu_{1-x}Ga_x)_2$ с небольшим содержанием галлия при гидрировании происходит трансформация типа кристаллической структуры из орторомбического $CeCu_2$ в гексагональный AlB_2 .

Литература

- 1. R.V.Denys, I.Yu.Zavaliy, R.Cerny, I.V.Koval' chuck. Structural studies of pseudobinary La(Cu_{1-x}Ni_x)₂ compounds and their hydrides. J. Alloys Comp., 2005, *in press*.
- 2. B.Chevalier, J.-L.Bobet, M.Pasturel, E.Gaudin, J. Etourneau.. Structure and magnetic properties of the ternary gallides CeMGa (M-Mn, Co, and Cu) and their hydrides. J. Alloys Comp., 2003, 356-357: 147-150.